
Appendix A

The RAMONA/POLCA Model

A.1 Neutron Kinetics and Power Generation

The most rigorous description of the neutron flux behavior is given by the Boltzmann trans-
port equation. A numerical solution of this fully three dimensional problem is prohibitively
expensive in computer time and memory. Therefore the following simplifications are stan-
dard in 3D numerical reactor models and proven to be acceptable.

• The energy dependence is characterized by two energy groups.

The border between thermal and fast neutrons is set at 1 eV such that neutrons in the
thermal group do not scatter up into the fast group.

• Using Fick’s law, the transport equation is simplified into a diffusion equation.

The solution of the core neutronics requires the definition of average cross sections.
The complex geometry of a fuel assembly cannot be modeled precisely with the Dif-
fusion equation and the coarse mesh used to calculate reactor wide data. A homoge-
nization is carried out by first obtaining a fine-mesh (2-D), multi group transport code
theory solution for the fuel cell using zero current boundary conditions. Then, flux
weighting of the multi group cross sections is performed to obtain the equivalent two-
group parameters for the homogenized fuel cell. For example, the node averaged total
cross section for energy group g is

Σt,g =

R
f uelcell

dV
R

∆Eg

dE ·Σt (r,E)ϕ (r,E)

R
f uelcell

dV
R

∆Eg

dE ·ϕ (r,E)
(A.1)

whereϕ(r,E) is the fine mesh, multi-group flux solution for the fuel cell obtained from
detailed auxiliary calculations performed e.g. with the lattice physics code PHOENIX
[2]. ∆Eg is the energy width of the group g. The first integration is the homogenization
procedure and the second integration is the energy averaging procedure known as
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group collapsing. All lattice code calculations are conducted in this work by the steady
state core simulators PRESTO or POLCA. MATSTAB reads the required data from
the master files generated by these steady state codes (see Figure 2.2 on page 19).

• The time dependence of the delayed neutrons is characterized by 6 delayed groups.

A.1.1 Governing Equations for Neutron Kinetics

The general diffusion theory equation is derived from the equation of continuity which states,
that the rate of change in number of neutrons is equal to the rate of production minus the
rate of absorption minus the rate of leakage of neutrons within a volume of interest. See any
reactor physics textbook for an in-depth explanation, e.g. [48].

1
V

∂ϕ
∂τ

= source−Σabsorptionϕ−divJ (A.2)

The neutron leakage term is obtained by applying Fick’s Law.

J = −D∇ϕ (A.3)

InsertingJ in the equation of continuity, assuming that D is not a function of position gives

1
V

∂ϕ
∂τ

= D∇ 2ϕ−Σabsorptionϕ + source (A.4)

The two-group equations with more detailed absorption and production terms are:

Diffusion equation for the fast neutron flux

1
V1

∂ϕ1

∂τ
= D1∇ 2ϕ1− (Σa1+Σr)ϕ1 +(1−β)(ν1Σ f 1ϕ1 +ν2Σ f 2ϕ2)+∑

d

λdCd (A.5)

(A.6)

Diffusion equation for the thermal neutron flux

1
V2

∂ϕ2

∂τ
= D2∇ 2ϕ2−Σa2ϕ2 +Σrϕ1 (A.7)

Precursors of delayed neutrons for group d

∂Cd

∂τ
= βd (ν1Σ f 1ϕ1 +ν2Σ f 2ϕ2)−λdCd (A.8)
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A.1.2 Boundary Conditions

The core of a BWR is surrounded by the coolant which acts as a reflector for both fast and
thermal neutrons. A reflector can significantly affect the characteristics of the neutron pop-
ulation within the core. It is therefore important to represent correctly the effects produced
by a reflector. Fick’s Law is not valid in the immediate vicinity of the surface of the core,
so another approach has to be found. It would be possible to simply include the reflector as
a part of the overall reactor. However, this way is computationally costly since fine meshes
are required to represent the reflector in a finite-difference approximation. MATSTAB uses
another common approach which overcomes this problem by excluding the reflector but,
instead, applying appropriate boundary conditions at the core-reflector interfaces. The most
general approach for the two-group approximation is to use a matrix albedoa defined at the
surface of the core. The following equations originate from the model used in POLCA and
are described in detail in [52].

Jreturn = a·Jout (A.9)

a =
[

a11 0
a21 a22

]
, J =

[
J1

J2

]
(A.10)

The values ofaij are taken from the master file of the steady state code.

A.1.3 Node Integrated Balance Equations

The nodalization of the core leads to node averaged quantities, denoted with a bar.

ϕ̄1 =
1

hxhyhz

Z
volume
o f node

ϕ1dr (A.11)

and

1
V1

∂ϕ̄1n

∂τ
=

1
hxhyhz

Z
volume
o f node

∇ D1∇ϕ 1dr− (Σa1 +Σr)ϕ̄1n

+(1−β) (ν1Σ f 1ϕ̄1n +ν2Σ f 2ϕ̄2n)+∑
d

λdC̄d

(A.12)

for the fast neutron flux. By means of the divergence theorem, we can rewrite the volume
integral as a surface integral

1
hxhyhz

Z
volume
o f node

∇ D1∇ϕ 1dr =
1

hxhyhz

Z
sur f ace
o f node

D1∇ϕ 1dA = −
6

∑
m=1

1
hnm

J1,nm (A.13)
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Where n is the number of the node and m is one of its neighbors. The node integrated balance
equations for the node n therefore look as follows.

1
V1

dϕ̄1n

dτ
= −

6

∑
m=1

1
hnm

J1,nm − (Σa1 +Σr)ϕ̄1n +(1−β)(ν1Σ f 1ϕ̄1n +ν2Σ f 2ϕ̄2n)

+∑
d

λdC̄d

(A.14)

1
V2

dϕ̄2n

dτ
= −

6

∑
m=1

1
hnm

J2,nm −Σa2ϕ̄2n +Σrϕ̄1n (A.15)

dC̄dn

dτ
= βd (ν1Σ f 1ϕ̄1n +ν2Σ f 2ϕ̄2n)−λdC̄dn (A.16)

The expression relating the node interface net currents to the average fluxes of the adjacent
nodes is

1
hnm

Jg,nm = Xg,nmϕ̄1,n −Yg,nmϕ̄1,m (A.17)

wherehnm is the extension of node n in the nm direction. The complete derivation is found
in [52],[48]. The coupling coefficients are given by

X1,nm =
Rnm

h2
x

√
D̃1n

√
D̃1m qn sn (A.18)

Y1,nm =
Rnm

h2
x

√
D̃1n

√
D̃1m qm sm (A.19)

X2,nm =
Rnm

h2
x

√
D̃2n

√
D̃2m qn sn r∞n (A.20)

Y2,nm =
Rnm

h2
x

√
D̃2n

√
D̃2m qm sm r∞m (A.21)

X1,nr =
2

h2
nr

D̃1nD̃1r

D̃1n + D̃1r
qnsn (A.22)

Y1,nr = 0 (A.23)

X2,nr =
2

h2
nr


 D̃2nD̃2r

D̃2n + D̃2r
−

C21
r∞n(

1
D̃1n

+ 1
D̃1r

)(
1

D̃2n
+ 1

D̃2r

)

 qn sn r∞n (A.24)

Y2,nr = 0 (A.25)

where

Node size ratios Rnm = 1 , m points in x,y-direction

Rnm = h2
x

h2
z

, m points in z-direction

Rnr = 0 , m points to reflector

r∞ = Σr
Σa2
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Infinite multiplication factor k∞ = β̃ν1Σ f 1+r∞ν2Σ f 2

Σa1

β̃ = 1−β+∑d
βdλd
λ+λd

Λ = D1
Σa1

Thermal diffusion length L2 = D2
Σa2

χ = L2

Λ

l2 = h2
x

2+ h2
x

h2
z

b2
1 = 1

4l2 k∞−1
L2+Λ

b2
2 = 3

4l2 1+χ
L2

t1 = 1− 1
3b2

1

sn = 1+ 2
3b2

1

t2 = b2− cp(b2− t1)

D̃g = Dg tg

D̃1r=
hnr
4

1−a11
1+a11

D̃2r=
hnr
4

1−a22
1+a22

C21= 8
hnr

a21
(1−a11)(1−a22)

rn = ϕ2
ϕ1

qn = 1+ χ
1+χ

(
r

r∞
−1
)

A.1.4 Prompt Jump Approximation

The time derivative of the fast and the thermal flux are both set to zero, which means that
the left hand side of A.14 and A.15 are set to zero.

0 = −
[

6

∑
m=1

X1,nm +Σa1+Σr

]
ϕ̄1n +

6

∑
m=1

Y1,nmϕ̄1m

+(1−β)(ν1Σ f 1ϕ̄1n +ν2Σ f 2ϕ̄2n)−∑
d

λdC̄dn

(A.26)

0 = −
[

6

∑
m=1

X2,nm −Σr

]
ϕ̄1n +

6

∑
m=1

Y2,nmϕ̄1m −Σa2ϕ̄2n (A.27)
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The prompt jump approximation is valid, if the life time of a neutron is much smaller than
the studied phenomena. Physically it is an immediate adaption of the neutron flux to pertur-
bations.

The life time of some precursors is much closer to the time a density wave needs to pass
the reactor than the neutron life time and, therefore, significant. The time derivative of the
precursors may not be set to zero. Nevertheless it is possible to simplify equation A.16
without much loss in accuracy.

Equation 2.25 describes the time dependence of a state variable. For the variableC̄d(τ) it
reads as follows.

C̄dn(τ) = c̄dneλτ ,d = 1, . . . ,6 (A.28)

Where ¯cdn is a scalar and not time dependent. Equation A.16 may now be written as follows.

dc̄dneλτ

dτ
= βd(ν1Σ f 1ϕ̄1n +ν2Σ f 2ϕ̄2n)−λdC̄dn (A.29)

It is now possible to carry out the derivation with respect to time. This transforms the differ-
ential equation into a algebraic equation.

λC̄dn = βd(ν1Σ f 1ϕ̄1n +ν2Σ f 2ϕ̄2n)−λdC̄dn (A.30)

C̄dn is depending onλ which actually is unknown. Therefore the starting guess ofλ is used
to calculateC̄dn. This simplification is good enough, as long as the starting guess forλ is
reasonable. The draw back is however, thatλ is complex and therefore the matrixA becomes
complex too. It remains to mention that this equation is used for the POLCA model as well
as for the RAMONA model.

Inserting A.31 into A.26 yields

C̄dn =
βd

λ−λd
(ν1Σ f 1ϕ̄1n +ν2Σ f 2ϕ̄2n) (A.31)

Inserting A.31 into A.26 yields

0 = −
[

6

∑
m=1

X1,nm +Σa1 +Σr

]
ϕ̄1n +

6

∑
m=1

Y1,nmϕ̄1m

+ β̃(ν1Σ f 1ϕ̄1n +ν2Σ f 2ϕ̄2n)

(A.32)

where

β̃ = 1−β+∑
d

βdλd

λ +λd
(A.33)
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Solving A.27 forϕ̄2n yields

ϕ̄2n =

[
Σr −∑6

m=1X2,nm
]

Σa2
ϕ̄1n + ∑6

m=1Y2,nm

Σa2
ϕ̄1m. (A.34)

Inserting the solution into A.32 leads to

0 = −
[

6

∑
m=1

X1,nm +Σa1 +Σr − β̃ν1Σ f 1− β̃ν2Σ f 2

[
Σr −∑6

m=1X2,nm
]

Σa2

]
ϕ̄1n

+

[
6

∑
m=1

Y1,nm + β̃ν2Σ f 2
∑6

m=1Y2,nm

Σa2

]
ϕ̄1m

(A.35)

and

ϕ̄1n =
∑6

m=1

(
Y1,nm + β̃ν2Σ f 2

Σa2
Y2,nm

)
ϕ̄1m

∑6
m=1(X1,nm + β̃ν2Σ f 2

Σa2
X2,nm)−Σa1(k∞ −1)

≡
6

∑
m=1

Anmϕ̄1m (A.36)

A.1.5 Linearization

Linearizing the neutronics means to linearize A.36.

∆ϕ̄1n =
∂ϕ̄1n

∂ϕ̄1m
∆ϕ̄1m +

∂ϕ̄1n

∂α
∆α +

∂ϕ̄1n

∂t
∆t

=
6

∑
m=1

Anm∆ϕ̄1m +
6

∑
m=1

[Anm(α +∆α)−Anm(α)]ϕ̄1m

∆α
∆α

+
6

∑
m=1

[Anm(t +∆t)−Anm(t)]ϕ̄1m

∆t
∆t

(A.37)

To calculate A.37 one needs to knowD1,D2,Σa1,Σa2,Σr,ν1Σ f 1,ν2Σ f 2,ν1 andν2 for α,α +
∆α, t and for t + ∆t. These values are calculated with the help of the tables generated for
the steady state core simulator. The tables are stored in the master file, and therefore avail-
able without problems. Therefore the linearization with respect to the void and temperature
dependence is done numerically.

A.1.6 Power Generation

MATSTAB takes into account the fact, that the fission energy is deposited as thermal energy
both inside the fuel pellet where the fission takes place and outside the pellet due to neutron
slowing down and gamma ray attenuation.

The total power generation rate in the fuel is

q̄′′′ = K (1−H (0,∞))(Σ f 1ϕ̄1n +Σ f 2ϕ̄2n) (A.38)
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whereH(0,∞) = 0.07 andK = 3.2·1011 Joule/Fission.

The thermal flux in A.38 is eliminated with the help of A.34.

q̄′′′ = K(1−H(0,∞))

([
Σ f 1 +

Σ f 2

Σa2

(
Σr −

6

∑
m=1

X2,nm

)]
ϕ̄1n +

Σ f 2

Σa2

6

∑
m=1

Y2,nmϕ̄1m

)

≡ Aqnϕ̄1n +Aqmϕ̄1m

(A.39)

A.1.7 Linearization

The linearization of A.39 reads as follows.

∆q̄′′′ =
∂q̄′′′

∂ϕ̄1n
∆ϕ̄1n +

∂q̄′′′

∂ϕ̄1m
∆ϕ̄1m +

∂q̄′′′

∂α
∆α +

∂q̄′′′

∂t
∆t

≈ Aqn∆ϕ̄1n +Aqm∆ϕ̄1m

+
Aqn(α +δα)−Aqn(α)

δα
ϕ̄1n∆α

+
Aqm(α +δα)−Aqm(α)

δα
ϕ̄1m∆α

+
Aqn(t +δt)−Aqn(t)

δt
ϕ̄1n∆t

+
Aqm(t +δt)−Aqm(t)

δt
ϕ̄1m∆t

(A.40)
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A.2 Modeling of Thermal Conduction

Associated with each neutronic node is an average fuel pin for which the thermal energy
source and heat conduction are calculated. The calculated average fuel temperature feeds
back into the neutronics (Doppler effect) and the calculated heat flux from the cladding
surface enters the hydraulics calculations.

A.2.1 Field Equation of Thermal Conduction

The thermal energy storage and conduction in the fuel pins, consisting of the fuel pellets,
of the gas gap between pellet and cladding and of the fuel cladding is modeled with the
following assumptions.

• Fuel and cladding are rigid, retaining their cylindrical geometries. Possible variations
in time of the gas gap width can be taken into account by a temperature dependent gap
conductance.

• The volumetric heat generationq′′′f is uniformly distributed over the fuel pellet cross
section. Gamma heat generation in the gas gap and the cladding is ignored.

• Axial and azimuthal conduction is negligible

• The thermal properties like heat capacity, conductivity etc. can be represented with
the correlations stated below.

The general form of the heat conduction equation

ρc
∂t
∂τ

= ∇ (k∇ t)+ q′′′ (A.41)

is formulated for the fuel and for the cladding separately. After neglecting axial and az-
imuthal conduction the equation looks as follows.

Pellet:

(ρc) f
∂t f

∂τ
=

1
r

∂
∂r

(
rk f

∂t f

∂r

)
+ q′′′f ,0≤ r < R f ,τ > 0 (A.42)

with the boundary conditions:

∂t f

∂r

∣∣∣∣
r=0

= 0 , for all τ

k f
∂t f

∂r

∣∣∣∣
r=R f

= kgp

δ [tc (Rci)− t f (R f )] , for all τ
(A.43)
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Cladding:

(ρc)c
∂tc
∂τ

=
∂
∂r

(
kc

∂tc
∂r

)
,r = Rci < r < Rco,τ > 0 (A.44)

with the boundary conditions:

kc
∂tc
∂r

= kgp

δ [tc (Rci)− t f (R f )] ,r = Rci, for all τ

−kc
∂tc
∂r

= hc
[
tc (Rco)− t f l

]
,r = Rco for all τ

(A.45)

Following correlations are implemented:

volumetric heat capacity of the fuel

(ρc) f = c1 + c2t f + c3t2
f + c4t3

f + c5t4
f (A.46)

volumetric heat capacity of the cladding

(ρc)c = c7 (A.47)

thermal conductivity for the fuel

k f =
c8

1+ c9 · t f
(A.48)

thermal conductivity for the cladding

kc = c10 (A.49)

thermal conductance of the gas gap

kgp

δ
= min

{
c11+ c12 · t̄ f + c13 · t̄2

f ,c14
}

(A.50)

with t̄ f =
1

M f

Mf

∑
i=1

t f ,i (A.51)

convective heat transfer for forced convection (Dittus Boelter)

h̄c, f orced convection =
kl

dh
NNu (A.52)

convective heat transfer for nucleate boiling (Jens-Lotte)

h̄c,nucleate boiling =
q′′NB

tW − tsat
(A.53)
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Figure A.1: Nodalization Scheme for the Heat Conduction in the Fuel Rod

A.2.2 Discretization

The fuel pin is radially divided intoM f fuel zones, a gas gap andMc cladding zones. Fuel
zones have the same volume, cladding zones the same thickness.

After long calculations (done explicitly in [114]) one derives

Pellet:

dt̄ f ,1

dτ
=

4M f

R2
f (ρc) f

k f (t f ,2)
t̄ f ,2− t̄ f ,1√

2
+

q̄′′′f
(ρc) f

(A.54)

dt̄ f ,i

dτ
=

4M f

R2
f (ρc) f


k f (t f ,i)

t̄ f ,i−1− t̄ f ,i√
i

i−1 −
√

i−2
i−1

−k f (t f ,i+1)
t̄ f ,i − t̄ f ,i+1√
i+1

i −
√

i−1
i


+

q̄′′′f
(ρc) f

(A.55)

i = 2, . . . ,M f −1

dt̄ f ,Mf

dτ
=

4M f

R2
f (ρc) f


k f (t f ,Mf )

t̄ f ,Mf −1− t̄ f ,Mf√
Mf

Mf −1 −
√

Mf −2
Mf −1

− R f (t̄ f ,Mf − t̄c,1)
R f (1−

√
1− 1

M f
)

k f (t f (R f ))
+ 2δ

kgp
+ ∆rc

kc


+

q̄′′′f
(ρc) f

(A.56)



144 APPENDIX A. THE RAMONA/POLCA MODEL

with the pellet surface temperature

t f (R f ) =

R f

(
1−
√

1− 1
M f

)
k f (t f (R f ))

(
t̄c,1− t̄ f ,Mf

)
R f

(
1−
√

1− 1
M f

)
k f (t f (R f ))

+ 2δ
kgp

+ ∆rc
kc

+ t̄ f ,Mf (A.57)

Cladding:

dtc,1
dτ

= kc
t̄c,2− t̄c,1

(ρc)c(∆rc)2 +

t̄ f ,M f −t̄c,1
(ρc)c∆rc

R f

(
1−
√

1− 1
M f

)
k f (t f (R f ))

+ δ
kgp

+ ∆rc
2kc

(A.58)

dt̄c, j

dτ
= kc

t̄c, j+1−2t̄c, j + t̄c, j−1

(∆rc)2(ρc)c
(A.59)

j = 2, . . . ,Mc −1

dt̄c,Mc

dτ
= − h̄c(tw − t f l)

(ρc)c∆rc
− kc

t̄c,Mc − t̄c,Mc−1

(ρc)c(∆rc)2 (A.60)

A.2.3 Linearization

The effort to linearize equations A.54-A.56, A.58 -A.60 analytically is not worth the benefit
in time. Therefore the equations are linearized numerically with respect tot f ,i, tc,i,q′′′ and
the system pressure P. However, these equations are much more detailed than effectively
necessary. They are part of the legacy of RAMONA. A simpler set of equations as used in
other codes as NUFREQ [79] could be solved analytically and would tidy up this part of
MATSTAB. Even though the six differential equations for the fuel contribute quite a large
number of equations the system matrixAs, they do not lead to any numerical difficulties
because of their weak spatial coupling.

The implemented equations read as follows.

∆t f ,i =
Mf

∑
j=1

∂t f ,i

∂t f , j
∆t f , j +

Mc

∑
j=1

∂t f ,i

∂tc, j
∆tc, j +

∂t f ,i

∂q̄′′′f
∆q̄′′′f +

∂t f ,i

∂P
∆P (A.61)

∆tc,i =
Mf

∑
j=1

∂tc,i
∂t f , j

∆t f , j +
Mc

∑
j=1

∂tc,i
∂tc, j

∆tc, j +
∂tc,i
∂q̄′′′f

∆q̄′′′f +
∂tc,i
∂P

∆P (A.62)
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A.3 Modeling of Thermal-Hydraulics

The thermal-hydraulic model of MATSTAB (RAMONA) is a

- four-equation
- non-homogeneous
- non-equilibrium
- one-dimensional
- two-phase flow

model with constitutive equations for thermodynamic state variables. Thermal non-equilibrium
between the phases is accounted for by allowing the liquid in a two-phase mixture to depart
from saturated conditions, while the vapor is assumed to be at saturation. Hydrodynamic
non-equilibrium, i.e. un-equal velocities of the two phases, is introduced via a slip correla-
tion.

The following assumptions are made

• MATSTAB describes the coolant flows in the pressure vessel, using a single recircu-
lation loop and a single steam line representative for all steam lines and recirculation
loops respectively.

• The models allow for the liquid phase to be sub-cooled or saturated, but they restrict
the vapor to saturation conditions.

• The flow parameters are assumed to be uniform over a cross section

• Averages of products are set equal to products of averages

• The spatial variation of pressure P is ignored for all thermo-physical property calcu-
lations and in the mass and energy balances, but in the momentum balance the axial
pressure variation is accounted for.

• Flow channels in the core, downcomer and recirculation loop are of constant cross-
sectionAc.

Thermodynamic variables are determined at the saturated state corresponding to the sys-
tem pressure (except the properties of sub-cooled water), and they are calculated as rational
functions of pressure A.71 through A.80. The compressibility and thermal expansion of the
liquid are approximated by that of saturated liquid. The following description of the TH-
model is very brief, because no major changes to the RAMONA model are introduced. The
interested user may consult [114] for a complete derivation.
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A.3.1 Governing Equations for the Thermal-Hydraulics

The thermal-hydraulic models in MATSTAB are based on the following four conservation
equations [45] for mixture momentum, vapor mass, liquid mass and mixture energy.

Mixture momentum balance

The one-dimensional, area-averaged mixture momentum balance is

∂Gm

∂τ
+

∂
∂z

[
αρgw2

g +(1−α)ρlw
2
l

]
= −∂P

∂z
−gzρm − flΦ2

l
Gm |Gm|
2ρldh

(A.63)

where the mixture mass fluxGm in the axial direction is

Gm = 〈αρgwg +(1−α)ρlwl〉 (A.64)

The symbolsfl,Φ2
l anddh designate the single-phase Darcy friction factor, computed as if

the mixture were flowing as a liquid, the two phase flow friction multiplier and the hydraulic
diameter of the channel, wetted by the fluid. The symbolgz is the gravitational acceleration
component in the negative z-direction.

Phasic mass balances for saturated vapor and liquid

The phasic mass balances

∂
∂τ

(αρg)+ ∇ (ρg jg) = ΓV (A.65)

∂
∂τ

[(1−α)ρl]+ ∇ (ρl jl) = −ΓV (A.66)

are used in the form of the mixture volumetric flux divergence.

∇ jm = ∇ jg + ∇ jl = ∇ (αwg)+ ∇ ((1−α)wl)

=
ρl −ρg

ρlρg
ΓV −

[
α
ρg

Dgρg

Dτ
+

1−α
ρl

Dlρl

Dτ

]
(A.67)

whereDk
Dτ

is the substantial derivative∂∂τ + wk
∂
∂z , k = l,g

Mixture energy conservation

∂
∂τ

[αρgug +(1−α)ρlul]+
∂
∂z

[αρghgwg +(1−α)ρlhlwl] =
q′w
A

+(1−α)q′′′l (A.68)
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A.3.2 Differential Equations

Pressure

As stated in the assumptions above, local pressure differences and acoustical effects are
disregarded. A single system pressure Psyst is defined

〈P〉syst=
1

V1+V2

Z
V1+V2

P dV (A.69)

as the pressure, averaged over the volumeV1 of liquid and the volumeV2 of two phase
mixture and pure vapor, as shown in figure A.2.

The time rate of change of〈P〉syst is computed by integrating the liquid part of A.67 overV1

and the two phase part of A.67 overV2. In the resultant equations, one replaces the volume
integrals of∇ jm by surface integrals and recognizes the continuity of the volumetric flux j
at all locations of flow discontinuity and at moving interfaces. By adding up the two equa-
tions and solving for the time-derivative d〈P〉syst

dτ , one reaches after tedious calculations, done
explicitly in [114] pages 125ff.

d 〈P〉syst

dτ
=

(A j)FW +(A j)SL +
R
V2

ρl−ρg

ρlρg
ΓV dV

R
V1+V2

[
α ρ′

g

ρg
+(1−α) ρ′

l
ρl

] (A.70)

whereρ′
l = ∂

∂Pρl and(A j)FW is the contribution to pressure rise from the feed-water injec-
tion. (A j)SL is the vapor volumetric flow rate entering the steam line, tending thereby to
reduce the pressure change rate. The last term accounts for the effects of phase change.

The thermal properties of the coolanttsat ,ρ f ,ρl ,ρg,ρm,hf g,cp,l ,ug,ul ,hg andhl are fitted as
functions in〈P〉syst .

tsat(P) =
i=5

∑
i=0

aiP
i
/ i=5

∑
i=0

biP
i (A.71)

ρ f (P) =
i=4

∑
i=0

ait
i
sat

/ i=3

∑ 4∑ �=t

sat s at,(A t

i
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+JSL

+JFW

V2: Two-Phase Mixture and
Single-Phase Vapor Region

V1: Single-Phase
Liquid Region

Figure A.2: Integration Regions for System Pressure
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cp,l(P) =
i=4

∑
i=0

ait
i
sat

/ i=3

∑
i=0

bit
i
sat (A.77)

ug(P) = hf g +P(1/ρf −1/ρg)+cp,l(tsat− t0sat) (A.78)

ul(P) = cp,l(tl − t0
sat)hg = ug +P/ρg (A.79)

hl = ul +P/ρl (A.80)

As a result one can eliminate the implicit pressure dependence stemming from the properties
in the momentum balance A.63 and decouple it form the mass and energy balances.

Closed-Contour Momentum Balance

To obtain the closed contour momentum balance for a typical contourζ1in figure 3.3 on
page 27 through the j-th core flow channel, MATSTAB divides the contour intoNs straight
segments of constant flow cross sectionAi and lengthLi. We denote the segment average of
the ith segment by

< · >i=
1
Li

Z Li

0
· dz (A.81)

A typical segment is shown in figure A.3

Z

L
i

Normal Flow

Junction i-1 Junction i

1 2
i-1
A

i-1

i+1
A

i+1

Segment i
Cross-Section A

i
1 2

Figure A.3: Notations for Contour Integration of the Momentum Balance

By integrating the momentum balance equation A.63 separately for each one of theNs seg-
ments in the jth contour through the jth core channel, one obtainsNs segment-averaged mo-
mentum balances.
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Li
d < Gm >i

dτ
=
{

P+
[
αρgw2

g+(1−α)ρlw
2
l

]}
i−1,2

−{P+
[
αρgw2

g+(1−α)ρlw
2
l

]}
i,1

−gz,iLi < ρm >i − 1
2dh,i

Z Li

0

flΦ2
l

ρl
Gm|Gm|dz

(A.82)

Next, one adds up theNs equations for the jth flow contour to obtain a single, ordinary
differential equation for the time rate of change of momentum along the closed contour with
index j.

d
dτ

M j ≡ d
dτ

Ns

∑
i=1

Li〈Gm〉 =
Ns

∑
i=1

∆{P+ wgGg + wlGl} j

−
{

Ns

∑
i=1

gz,i〈ρm〉iLi +
1
2

Ns

∑
i=1

+
1

dh,i

Z Li

0

flΦ2
l

ρl
Gm|Gm|dz

}
j

(A.83)

The pressure differences across the junction with index i (Figure. A.3) are eliminated with
the aid of the jump condition given by

Pi,1 +
1
2

[Glwl + Ggwg]1 = Pi,2 +
1
2

[Glwl + Ggwg]2 + ξ12
1
2

[Glwl + Ggwg]Amin
(A.84)

and therefore

{P+ wgGg + wlGl} j =
1
2
{[wgGg + wlGl]2

− [wgGg + wlGl]1− ξ12[wgGg + wlGl]Amin} j

(A.85)

A.85 applies to all junctions, except across the mixing throat in the jet pump designated by
i=JT, there

∆{P+ wlGl}JT = ∆PJT (A.86)

A.83 can now be written as

dM j

dτ
= ∆PJT −

Ns

∑
i=1

{
gz,i〈ρm〉Li +

1
2dh,i

Z Li

0

flΦ2
l

ρl
Gm|Gm|dz

}
j

+
1
2

Ns

∑
i=1

i �=JT

{
[wgGg + wlGl]2− [wgGg + wlGl]1

[
1+

(
A1

Amin

)2

ξ12

]}
j

(A.87)

The four summands are the pump head, the gravitational head, the frictional pressure loss
and the sum of the singular pressure losses (area changes, spacers) along the path.
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Mixture Energy

Integrating A.68 over the cell volumeVk and introducing

umρm = (1−α)ρlul +αρgug (A.88)

leads to

d 〈umρm〉k

dτ
= (hgWg + hlWl)k−1− (hgWg + hlWl)k

+
[〈

q′w
〉

k +
〈
A(1−α)q′′′l

〉
k

] Vk

Ak

(A.89)

Steam Mass

By integrating A.65 over the k-th computational cell, assuming a uniform vapor density and
using the divergence theorem one obtains

d (mg)k

dτ
= 〈ΓV 〉k ∆V +(Wg)k−1− (Wg)k (A.90)

A.3.3 Algebraic Equations

Mixture Volumetric Flow

The integral of A.67 over the coolant volume in the vessel yields

A j (z) jm, j (z) = A
(
z+

core inlet

)
jm, j

(
z+

core inlet

)
+Φ j (z) (A.91)

with

z+
core inlet = lim

ε→0
(zcore inlet + ε) (A.92)

and the volume expansion

Φ j(z) =
zZ

zcore inlet

A j

[
ρl −ρg

ρlρg
ΓV − α

ρg

Dgρg

Dτ
− (1−α)

ρl

Dlρl

Dτ

]
j

dz (A.93)

and in the finite difference approximation

Φ j = VjΓv
ρl −ρg

ρlρg
+Wg,k−1

(
1

ρg,k
− 1

ρg,k−1

)
+Wl,k−1

(
1

ρl,k
− 1

ρl,k−1

)
(A.94)
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Slip

MATSTAB treats non-homogeneous two-phase flow, i.e. unequal velocities of the phases
with a slip correlation.

wg = Swl +w0 (A.95)

This relates the vapor velocitywg with the liquid velocitywl, using the Bankoff-Malnes
correlation.

S = 1−α
c1−α α ≤ c1− ccut

S = c2− c3(α− c4) cmax > α > c1− ccut

S = cmax α ≥ cmax

(A.96)

with the vapor void fraction

α =
mg

ρg

(
〈P〉syst

)
∆V

(A.97)

Phasic Velocity

From A.67 and A.95 one derives the phasic velocities

wg =
S jm +(1−α)w0

1+α (S−1)
(A.98)

wl =
jm −αw0

1+α (S−1)
(A.99)

Mass Flow Rate

Wg = Aρgαgwg (A.100)

Wl = A(1−α)ρlwl (A.101)

Vapor Generation Rate

The vapor generation rate is computed in two parts

ΓV = ΓW +Γph (A.102)
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The first part accounts for evaporation due to heat transfer from the wall to the liquid phase.
The second part accounts for mass transfer (evaporation or condensation) due to heat transfer
between the phases.

ΓW =
q′W
/

A

hf g + cp,l

[
(tsat − tl)

ρl
ρg

+ 1
2 (tw − tsat)

(
ρl
ρg
−1
)] (A.103)

The three terms in the denominator correspond to the heat of evaporation, necessary heating
of sub-cooled liquid and removal of energy by the liquid which is returned from the boundary
layer to the bulk of liquid.

Γph =
c1 + c2α (1−α)

hf g
[(tl − tsat)+ c3 |tl − tsat|] (A.104)

The three state variablesq′w, tl and tw introduced in A.103 are given in their final form. A
detailed derivation can again be found in [114]

Linear Heat Generation Rate:

q′W =
(
ξh̄c
)(

tw − t f l
)− (ξŪ)lb

(
t f l − tlb

)
(A.105)

whereξ is the heated perimeter. The second term in A.105 accounts for the bypass.

Liquid Temperature:

tl = tsat +
ρmum −αρgug

(1−α)ρlcp,l
(A.106)

Equation A.106 is an implicit definition of the liquid temperature becauseρl andug depen-
dent themselves ontl.

Wall Temperature:

tw = tc (Rco) = t f l +
tc,MC − t f l

1+ hc∆rc
2kc

(A.107)
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A.3.4 Linearization

Pressure

The linearization of the system pressure A.70 becomes

∆〈P〉syst=
∂〈P〉syst

∂P
∆〈P〉syst+

∂〈P〉syst

∂Γv
∆Γv +

∂〈P〉syst

∂tl
∆tl

=
∂〈P〉syst

∂P
∆〈P〉syst+

ρl−ρg

ρlρgVk1

α ρ′
g

ρg
+(1−α)ρ′

l
ρl

Vk1,2

∆Γv

+
ΓvVk1

ρg



[
α ρ′

g

ρg
ρl +(1−α)ρ′

l

]
−
(

ρl
ρg
−1
)

αρ′
g[

α ρ′
g

ρg
ρl +(1−α)ρ′

l

]2
Vk1,2


 ∂ρl

∂tl
∆tl

(A.108)

The value of∂〈P〉syst

∂P ∆〈P〉syst is derived numerically while∂ρl
∂tl

comes easily from A.73

Momentum Balance

The linearization of the momentum balance A.83 becomes

∆M =
∂M
∂P

∆P+
∂M
∂α

∆α +
∂M
∂tl

∆tl +
∂M
∂Wl

∆Wl +
∂M
∂Wg

∆Wg (A.109)

This linearization is done numerically due to the complexity of A.83.

Mixture Energy

The linearization of the mixture energy A.89 becomes

∆umρm =
∂umρm

∂P
∆P+

∂umρm

∂tl
∆tl +

∂umρm

∂Wl,k
∆Wl,k +

∂umρm

∂Wl,k−1
∆Wl,k−1

+
∂umρm

∂Wl,g
∆Wl,g +

∂umρm

∂Wl,g−1
∆Wl,g−1 +

∂umρm

∂q′w
∆q′w +

∂umρm

∂q′′′l
∆q′′′l +

∂umρm

∂α
∆α

= −hl,k∆Wl,k + hl,k−1∆Wl,k−1−hg,k∆Wg,k + hg,k−1∆Wg,k−1

+
Vk

Ak
∆q′w +Vk(1−α)∆q′w −Vkq′′′l ∆α

(A.110)

∂umρm
∂P and ∂umρm

∂tl
is neglected.
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Steam Mass

The linearization of the steam mass A.90 becomes

∆mg,k =
∂mg,k

∂Γv,k
∆Γv,k +

∂mg,k

∂Wg,k
∆Wg,k +

∂mg,k

∂Wg,k−1
∆Wg,k−1

= Vk∆Γv −∆Wg,k +∆Wg,k−1

(A.111)

Mixture Volumetric Flux

The linearization of the volumetric mixture flux A.67 becomes

A∆ jm = A(z+
coreinlet )∆ jm(z+

coreinlet )

+
∂Φ
∂Γv

∆Γv +
∂Φ

∂Wg,k−1
∆Wg,k−1 +

∂Φ
∂Wl,k−1

∆Wl,k−1

= Vk
ρl −ρg

ρlρg
∆Γv +

(
1

ρl,k
− 1

ρl,k−1

)
∆Wl,k−1 +

(
1

ρg,k
− 1

ρg,k−1

)
∆Wg,k−1

(A.112)

∂Φ
∂P and ∂Φ

∂tl
is neglected.

Slip

The linearization of the slip A.96 becomes

∆S = ∂S
∂α ∆α

= 1−c1
(c1−α)2 ∆α α ≤ c1− ccut

= −c3∆α cmax > α > c1− ccut

= 0 α ≥ cmax

(A.113)

Phasic Velocity

The linearization of the gas velocity A.98 becomes

∆wg =
∂wg

∂α
∆α +

∂wg

∂ jm
∆ jm +

∂wg

∂S
∆S

=
wg(1−S)−w0

1+α(S−1)
∆α +

S
1+α(S−1)

∆ jm +
jm −wgα

1+α(S−1)
∆S

(A.114)
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Mass Flow Rate

The linearization of the liquid mass flow rate A.101 becomes

∆Wl =
∂Wl

∂P
∆P+

∂Wl

∂α
∆α +

∂Wl

∂S
∆S+

∂Wl

∂tl
∆tl +

∂Wl

∂jm
∆jm

= A(1−α)wl
∂ρl

∂P
∆P

−ρlA
−[1+α(S−1)]w0− ( jm −αw0)(S−1)

[1+α(S−1)]2
∆α

−A(1−α)ρl
( jm −αw0)α

[1+α(S−1)]2
∆S

+ A(1−α)wl
∂ρl

∂tl
∆tl

+
A(1−α)ρl

1+α(S−1)
∆ jm

(A.115)

The linearization of the gas mass flow rate A.100 becomes

∆Wg =
∂Wg

∂P
∆P+

∂Wg

∂α
∆α +

∂Wg

∂wg
∆wg

= Aαwg
∂ρg

∂P
∆P+Aρgwg∆α +Aαρg∆wg

(A.116)

Vapor Generation Rate

The linearization of the vapor generation rate A.102 becomes

∆Γv =
∂Γv

∂P
∆P+

∂Γv

∂α
∆α +

∂Γv

∂tl
∆tl +

∂Γv

∂tw
∆tw +

∂Γv

∂q′w
∆q′w (A.117)

This linearization is done numerically due to the complexity of A.102.

Linear Heat Generation Rate

The linearization of the linear heat generation rate A.105 becomes

∆q′w =
∂q′w
∂P

∆P+
∂q′w
∂tw

∆tw +
∂q′w
∂tl

∆tl

=
∂q′w
∂P

∆P+
∂q′w
∂Wl

∆Wl

+(4ξh̄c,boil + ξh̄c,nonboil)∆tw − ξh̄c,nonboil∆tl

(A.118)

The first term is linearized numerically due to the manyfold dependence on P.
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Liquid Temperature

The linearization of the liquid temperature A.106 becomes

∆tl =
∂tl
∂tl,0

∆tl,0 +
∂tl
∂P

∆P+
∂tl
∂α

∆α +
∂tl

∂umρm
∆umρm (A.119)

This linearization is done numerically for all parts. The work of doing this by hand does not
correspond to the benefits.

Wall Temperature

The linearization of the wall temperature A.107 becomes

∆tw =
∂tw

∂t0,w
∆t0,w +

∂tw
∂P

∆P+
∂tw

∂tc,MC
∆tc,MC +

∂tw
∂tl

∆tl (A.120)

Also this linearization is done numerically for all parts due to the same reasons as above.

A.4 The Numerical Linearization

The implemented numerical scheme to linearize numerically is very simple. The equation
is evaluated once for the steady state and once with one parameter slightly disturbed. The
linearization ofg(α) with respect toα is therefore

∆g(α) =
g(α +δα)−g(α)

δα
(A.121)

The size ofδα is chosen so small, that a small change inδα would not change∆g(α). Using
A.121 is very fast, though not elegant.



158 APPENDIX A. THE RAMONA/POLCA MODEL


