
Chapter 4

Calculation of the Key Parameters
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4.1 The Numerical Problem

The key values in MATSTAB are the eigenvalueλ and the eigenvectorei in 2.25. In order
to calculateλ and ei one must solve the generalized eigenvalue problem 2.15. Using the
standard nomenclature from linear algebra textbooks [30], 2.15 can be written as follows.

Ae = λBe (4.1)

A ∈Cnxn, B =




1 0 . . . 0

0
...

1
... 0

...
. . .

0 . . . 0




As stated earlier, the analytical solution for 4.1 is well known and can be derived with various
decomposition methods [30]. However, the computational effort for large matrices grows
with n2 and becomes very soon infeasible.

In the case where only one or a few eigenvalue/eigenvector pairs are needed, iterative meth-
ods are a practical and fast solution. There are numerous efficient algorithms available for
reasonable sized systems e.g. [30], [100], [90], [23], [53] and many others. Some robust
and general methods are also directly available as FORTRAN programs or modules like
ARPACK [50], NSPCG [69] and others.

However, to solve 2.25 an algorithm must fulfill the following requirements in a efficient
way.

• Handle anon-symmetric matrix A

• Handle thegeneralized eigenvalue problem

• Handle avery large matrix A

• Handle acomplex matrix A

• Be applicable for asparse matrix A

This list is ordered in decreasing difficulty and rules out most of the published algorithms.
From the remaining possibilities, the LANCZOS method [20],[75] and the ARNOLDI it-
eration [37],[89] are the most promising. Nevertheless, these state-of-the-art methods were
too general to solve 2.15 efficiently. MATSTAB therefore uses a tailored subspace method
that takes full advantage of the known and fixed structure ofA, combined with an extended
version of Newton’s method. Subspace methods and Newton’s method are not new in this
field, see [80] and [30]. However, their combination does not appear in the literature.
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Basically the matrixA is divided into suitable sub-matricesAi that form a set of linear sets
of equations. The sub-matrices are chosen in a way that it becomes easier to solve the result-
ing set of equations. Unfortunately, it is not possible to decouple the subsets completely and
therefore an outer iteration over the sub-solutions is necessary. The details of this approach
are described in the six sections of this chapter. The first two sections introduce the stan-
dard numerical methods and their modification for MATSTAB while the later four sections
describe the algorithms specifically designed for MATSTAB. Please note, that in a section
dealing with numerical methods,A stands for any matrix while speaking about MATSTAB,
A stands for the main matrix in the linearized BWR stability problem.

Structure of this chapter:

1. SolvingAx = b for a very largeA

2. SolvingAx = λBx for specificλ’s

3. Partitioning into subspaces

4. The MATSTAB algorithm for the global mode

5. Calculating the left eigenvector

6. The MATSTAB algorithm for the regional mode

4.2 Solving Ax= b for a Very Large Matrix A

Whatever algorithm is used to solve a large eigenvalue problem, one must be able to solve
efficiently matrix equations of the form

Ax = b (4.2)

The straightforward approach would be to invertA, but the algorithms to invert a matrix
are computational very expensive and only recommendable if the explicit answer forA−1

is needed. To solve 4.2 forx, A−1 is of no interest. Depending on the size and structure of
the matrix, MATSTAB uses either Gaussian elimination to solve equation sets with an easy
structure, theLU decomposition for a moderate structured or the iterative conjugate-gradient
method for a difficult structured equation set 4.2.

4.2.1 LU - Decomposition

Any square matrixA can be decomposed into a lower and upper triangular matrix.

A = LU (4.3)
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L =




1 0 0 . . . 0

∗ 1 0
...

∗ . .. . . . . .. 0
... ∗ 1 0
∗ . . . ∗ ∗ 1




U =




∗ ∗ . . . ∗ ∗
0 ∗ ...

0
... . . . ∗

... 0 ∗ ∗
0 . . . 0 0 ∗




∗ ∈C

WhereL is the lower triangular matrix andU is the upper triangular matrix. The equation

Ax = LUx = b (4.4)

can thus be solved with
x = U−1L−1b (4.5)

Because of the structure ofL andU, equation 4.4 is very efficiently solvable with backward
substitution. It is not necessary to calculateL−1 or U−1. The major computational work lies
in the decomposition 4.3.

To emphasize the fact thatL−1 andU−1 are not calculated, 4.5 is written as

x = U\(L\b) (4.6)

or
x = A \

LU

b (4.7)

To illustrate the problems of theLU decomposition, the real matrices encountered in MAT-
STAB are discussed. Figure 4.1 shows the structure of the matrixAtu

Atu =
[

uT
t,1 0

At −λkBt −Btet,k

]

which is used in step 2 of algorithm 4.6. The blank part of the matrix represents zero ele-
ments and the remaining part represents non-zero elements. The largeblack triangle is not
as densely filled with numbers as it looks. In fact the dots should form a grid with two
black dots every 50 points, but the resolution of the Figure suppresses the 48 white points in
between.

Figures 4.2 and 4.3 show theL and U factors ofAtu. The number of non-zero values in
L andU is approximately 3 times higher than the number of non-zeros inAtu. Hence, the
construction of this sub-matrix succeeded and the sparsity is in this case preserved.

Although theLU decomposition is much faster than the true inversion ofAtu, some draw-
backs remain. A very largeA is normally, and especially in our case, truly sparse. Less than
0.1% of all entries inAtu are different from zero. The algorithms take profit of this prop-
erty and conduct no calculations for the ”zero” parts of the resulting matrix. Unfortunately,
the L andU factors of a sparse matrix are not necessarily sparse too. This fact increases
extensively the computing time, and more crucial, the memory requirements ofL andU.
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Figure 4.1: Structure of the MatrixAtu Used in Step 2 of Algorithm 4.6

The requirements for a decomposition of some matrices appearing in MATSTAB are pro-
hibitively high. Figures 4.4, 4.5 and 4.6 show theLU decomposition of the matrixAn, the
neutronic part of the matrixA. Even though the matrixAn is relatively small, and the struc-
ture of the matrix is more appropriate for an efficient numerical treatment than the structure
of Atu, the loss of sparsity is very significant. The non-zeros and, therefore, the memory re-
quirements are multiplied by a factor of 330. So theLU decomposition ofAn takes 250MB
of RAM and nearly an hour of computing time. The reason for the different behavior ofAtu

andAn lies in the physical structure of the underling equations. The thermal hydraulics prop-
erties described inAtu are in most cases only coupled to the up- and downstream neighbors.
The neutronic properties ofAn on the opposite, are coupled with all six spatial neighbors. It
is this interconnection with many other nodes, that makes the decomposition ofAn compu-
tationally expensive. To overcome this technical bottle neck, MATSTAB uses the iterative
conjugate gradient method explained in the next section to solve equations of this type.
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Figure 4.2: Lower Triangular Part of Atu

4.2.2 Conjugate Gradient Method

The method of conjugate gradients (CG) can be found in most numerical linear algebra
textbooks [31], [90]. There are several slightly different versions that converge with different
speed depending on the structure of A. For the sake of completeness, we state the basic ideas

behind conjugate gradients and the algorithm implemented in MATSTAB.

Assuming A is positive definite, for the functional

F(x)≡1
2

xTAx−x T

b (4.8)

with its gradient
∇ F(x) = Ax−b (4.9)

the minimization problem ∇ F(x) = 0 is equivalent to solvingAx= b. In the following, the
minimization ofF with respect to a particular direction p plays a central role. Optimization
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Figure 4.3: Upper Triangular Part of

A

tu

over all

x

∈

ℜ

n

is replaced by the one-dimensional minimization problem

∇

f

(

α

)

≡ ∇

F

(

x

+

α

p

) = 0 (4.10)

After solving 4.10 the optimalα

is found to be

α

opt (

x

,

p

) =

||

r

m

||22

p

T

Ap

(4.11)

where

r

m

= b

−

Ax

m

. In each iteration of the CG method, the vectorx

m

is now optimized

in a new direction

p

m

+

1

. T he optimal choice forp

m

+

1

is not obvious, but a detailed analysis

e.g. [30] shows

p

m

+

1

= r

m

+

||

r

m

||22
||

r

m

+

1

||22
p

m

(4.12)

Hence MAT S TAB uses the following algorithm for solving

Ax = b

.
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Figure 4. 4: Structure of the MatrixA n Algorithm 451: Conjugate Gradients

1. p

0
= 0

x 0

= any starting guessr 0 = b � A x 0

2. pm + 1= rm+��rm��22
��rm + 1��2
2 p
m

3. opt=

��r m��2
2
pT
m + 1
Apm + 1

4. x m + 1= x

m
+  opt p m + 1

5. r m + 1 = b � A xm + 1= b � A xm� optp m + 1= r m �  optp m + 1
6. If��rm + 1��2
2

> t o l goto step 2
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Figure 4.5: Lower Triangular Part of the MatrixAn

4.3 The Calculation of a Specific Eigenvalue/Eigenvector

From a physical point of view, only the few dominant eigenvalues are of interest. Since the
computation time for the eigenvalue/eigenvector is significant, not to say crucial, MATSTAB
uses methods which calculate only the dominant eigenvalues. These eigenvalues can be sin-
gled out because from equation 2.27 follows that a high decay ratio is equivalent with a large
real part of the eigenvalue, therefore the eigenvalue with the largest real part is dominating.
The following paragraphs give a stepwise approach to the calculation of selected eigenval-
ues. These methods are by no means new, but they are necessary to understand the final
algorithm 4.6.

The mechanism behind calculating one single eigenvalue/eigenvector pairλ/e for

Ae = λe (4.13)

can be best understood in the power method.
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Figure 4.6: Upper Triangular Part of the MatrixAn

4.3.1 Power Method

The largest (in magnitude) eigenvalue and its right eigenvector for the matrixA ∈ Cnxn are
found with the iteration:

Algorithm 4.2: Power Method

1. e0 any starting guess

2. ek+1 = Aek

3. λk+1 = eT
k+1Aek+1

eT
k+1ek+1

4. If ||Aek+1−λk+1ek+1|| > tol goto step 2



4.3. THE CALCULATION OF A SPECIFIC EIGENVALUE/EIGENVECTOR 45

In order to understand why this iteration works, assume thatA has distinct eigenvalues, with
|1λ|< · · ·< |iλ|< · · ·< |nλ|. SinceA then has a full set of eigenvectors,1e,2e, . . . ,ne forming
a base, the start vector can be written as

e0 =
n

∑
i=1

icie (4.14)

The vectorek, resulting after k iterations can be written as,

ek = Ake0 =
n

∑
i=1

iciλk
ie (4.15)

Clearly,ek will be more and more dominated byne. The convergence of the power method is
linear, with a convergence rate proportional ton−1λ

nλ . The computational effort for this algo-
rithm is very small, since the only matrix operations involved are multiplications. However,
the eigenvalues with the largest absolute value are not of any interest from a physical point
of view. The algorithm has therefore to be modified to calculate the eigenvalues with the
desired properties (e.g. smallest real part).

4.3.2 Inverse Iteration

The next simple step is the modification of algorithm 4.2 for the calculation of thesmallest
(in magnitude) eigenvalue.

Algorithm 4.3: Inverse Iteration

1. e0 = any starting guess

2. Aek+1 = ek

3. λk+1 = eT
k+1Aek+1

eT
k+1ek+1

4. If ||Aek+1−λk+1ek+1|| > tol goto step 2

The major computation here is to solveAek+1 = ek for ek+1 each iteration. This is somewhat
expensive, but doable with either anLU decomposition or the conjugate gradient method.
Inverse iteration is the power method applied toA−1, and consequently the convergence of
the inverse iteration is linear with convergence rate proportional to1λ

2λ .
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4.3.3 Inverse Iteration with Shift

If more than one, or a special, eigenvalue is needed, a spectral transformation is necessary.

Algorithm 4.4: Inverse Iteration with shift

1. e0 = any starting guess
λ0 = any starting guess

2. (A −λkI)ek+1 = ek

3. λk+1 = eT
k+1Aek+1

eT
k+1ek+1

= λk + eT
k+1ek

‖ek+1‖2

4. If ||Aek+1−λk+1ek+1|| > tol got to step 2

Note that it is not necessary to updateλk in (A - λkI ) each iteration. In general, the con-
vergence will be faster if one does, but on the other hand without updatingλk, the LU
decomposition of (A - λkI ) from the previous iteration can be used again. The convergence
is cubic for the symmetric case.

4.3.4 Newton’s Method

Due to the limited machine precision, the algorithm 4.4 has significant error bounds for a
very largeA. Therefore a combination with Newton’s method is introduced [80].

The quality of an approximate solutionxk of f(x) = 0 may be improved by the update

xk+1 = xk − ∇ f(xk)
−1f(xk) (4.16)

Because the magnitude of an eigenvector is not defined, one equation has to be added to 4.13
to define a unique functionf for the eigenvalue problem, e.g.

uT
1 e= e(1) = 1 uT

1 = [1,0, . . . ,0] (4.17)

The functionf therefore is defined as follows.

f(λ,e) = 0 ⇔
∣∣∣∣ uT

1 e−1 = 0
(A −λI)e = 0

∣∣∣∣ (4.18)

The Newton update [
ek+1

λk+1

]
=
[

ek

λk

]
− ∇ f(λk,ek)

−1f(λk,ek) (4.19)

for the inverse iteration with shift becomes[
ek+1

λk+1

]
=
[

ek

λk

]
−
[

uT
1 0

A −λkI −ek

]∖[
uT

1 ek −1
(A −λkI)ek

]
(4.20)



4.4. PARTITIONING INTO SUBSPACES 47

The meaning of the backslash used above is explained in the comment to equation 4.6.[
uT

1 0
A −λkI −ek

][
ek+1−ek

λk+1−λk

]
= −

[
0

(A −λkI)ek

]
(4.21)

Equation 4.21 can be extended naturally for the generalized eigenvalue problem

Ae = λBe (4.22)

f (λ,e) = 0 ⇔
∣∣∣∣ uT

1 e−1 = 0
(A −λB)e = 0

∣∣∣∣ (4.23)

[
uT

1 0
A −λkB −Bek

][
ek+1−ek

λk+1−λk

]
= −

[
0

(A −λkB)ek

]
(4.24)

The iteration process for 4.24 becomes now:

Algorithm 4.5: Generalized Newton’s Method

1. e0 any starting guess
λ0 any starting guess

2.

[
∆ek+1

∆λk+1

]
=
[

ek+1−ek

λk+1−λk

]
=
[

uT
1 0

A −λkB −Btek

]∖[
uT

1 ek −1
(A −λkB)ek

]

3. ek+1 = ek +∆e

4. λk+1 = λk +∆λ

5. If ||∆e|| > tol goto step 2

4.4 Partitioning Into Subspaces

The direct implementation of algorithm 4.5 fails due to the sheer size ofA (see Figure 4.7)
in MATSTAB. Step 2 of 4.24 is not feasible in reasonable time. Therefore the matrixA is
divided into suitable sub-matrices.

The matricesA, B and the vectore are split up as follows.

A =




At At j 0 Atq At f

A jt A j 0 0 Aj f

ANT 0 AN 0 0
Aqt 0 Aqn −I 0
A f t A f j 0 A f q A f


 (4.25)
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B =




B

t0 0 0 0
0 B

j0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 B

f


e=


e

tejeneqef
 (4.26)

TheindicesaresetasfollowstThermal-hydraulicequations
jVolumetricmixtureflux

nNeutronflux Φ
qFissionpowerq”’

fFueltemperatures
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Figure 4.8: The MatrixA Divided Into Physical Subspaces

The capital letters N and NT in 4.25 symbolize that the corresponding matrices are complex.

AN = An + iAnIm ,ANT = Ant + iAntIm (4.27)

The complex part of the neutronics was introduced by A.33.

Figure 4.8 shows the partition ofA corresponding to 4.25.

Equation 4.28 shows the generalized eigenvalue problem 2.15 as formulated in MATSTAB.




λBtet

λB jej

0
0

λB f ef


=




At At j 0 Atq At f

A jt A j 0 0 Aj f

ANT 0 AN 0 0
Aqt 0 Aqn −I 0
A f t A f j 0 A f q A f







et

ej

en

eq

ef


 (4.28)
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Equation 4.28 is equivalent to the following set of equations.

λBtet = Atet +At jej +Atqeq +At f ef (4.29)

λB jej = A jtet +A jej +A j f eq (4.30)

0 = ANT et +ANen (4.31)

0 = Aqtet +Aqnen −eq (4.32)

λB f ef = A f tet +A f jej +A f qeq +A f ef (4.33)

4.5 The Global Mode

This section explains how Newton’s method is applied to the subspace approach introduced
above. Since normally the global oscillation mode of the reactor is dominant MATSTAB
always starts with calculating this mode. If requested, the eigenvalues/eigenvectors for re-
gional oscillations are calculated afterwards.

4.5.1 The Starting Guesses

Since we use iterative methods, the calculation starts with a guess of the eigenvalue derived
from a guess of the decay ratio and from the expected frequency of the oscillation. Equation
2.27 on page 17 is used to transform these values into an eigenvalue.

The starting guesse0 of the eigenvector is constructed automatically fromλ0 and the starting
guessen,0 for en. The vectoren,0 is created from the power distribution of the steady state
solution. This implies, that the shape ofen is similar to the shape of the power density in the
reactor! The equations implemented below, are derived from equations 4.29ff.

Preliminary step: eq,0 = Aqnen,0

ef ,0 = (λ0B f −A f ) \
GE

(A f qeq,0)

Construction step: et,0 = (λ0Bt −At) \
LU

(At f ef ,0 +Atqeq,0)

en,0 = An \
CG

(ANT et,0 + iAnImen,0)

eq,0 = Aqnen,0 +Aqtet,0

ef ,0 = (λ0B f −A f ) \
GE

(A f qeq,0 +A f tet,0)

(4.34)

The symbols\
GE

, \
LU

and \
CG

are to be understood in the way, that the set of equations is solved

either with Gaussian elimination,LU decomposition or conjugate gradient methods.

The construction step improves the guess foren and is therefore repeated three times to
improve the overall quality of the starting guess for the eigenvector. There is no sense to do
more iterations sinceλ0 is not updated and the algorithm produces only a starting guess.
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4.5.2 The Main Iteration

The main iteration process is a combination of Newton’s method and the iteration over the
subspaces.

Newton’s method is applied to the thermal-hydraulic part of the problem.

f(λ,et) = 0 ⇔
∣∣∣∣ uT

t,1et −1 = 0
(At −λBt)et +At f ef +Atqeq = 0

∣∣∣∣ (4.35)

This leads to∆λk+1 and∆et,k+1 which are then used to createen,k+1,eq,k+1, andef ,k+1. The
algorithm reads now as follows.

Algorithm 4.6: Newton’s Method with subspaces

1. en,0 from power distribution
λ0 from DR guess and frequency guess

2.

[
∆et,k+1

∆λk+1

]
=
[

uT
t,1 0

At −λkBt −Btet,k

]∖
LU

[
uT

t,1et,k −1
(At −λkBt)et,k +At f ef ,k +Atqeq,k

]

3. ek+1 = ek +∆ek+1

4. λk+1 = λk +∆λk+1

5. en,k+1 = An \
CG

(ANT et,k+1 + iAnImen,k)

6. eq,k+1 = Aqtet,k+1 +Aqnen,k+1

7. ef ,k+1 = (λk+1B f −A f ) \
GE

(A f tet,k+1 +A f qeq,k+1)

8. If ||∆e|| > tolerance goto step 2

4.6 The Left Eigenvector

As mentioned several times before, the decay ratio describes only one aspect of instability.
Most information is stored in the eigenvectors. The right eigenvector is a natural byproduct
of the eigenvalue calculation. The left eigenvector, however, has to be calculated separately.
The methods used to calculate the left eigenvector are similar to the the methods used for
the right eigenvector and the eigenvalue. However, the knowledge of the latter makes the
process a bit simpler and faster. The starting point is the generalized left eigenvalue equation
corresponding to equation 4.28.
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λBt ft

λB jf j

0
0

λB f f f


=




ft

f j

fn

fq

f f




T 


At At j 0 Atq At f

A jt A j 0 0 Aj f

ANT 0 AN 0 0
Aqt 0 Aqn −I 0
A f t A f j 0 A f q A f


 (4.36)

Transposing the equation leads to a right eigenvector problem.




λBT
t ft

λBT
j f j

0
0

λBT
f f f


=




AT
t AT

jt AT
NT AT

qt AT
f t

AT
t j AT

j 0 0 AT
f j

0 0 AT
N AT

qn 0
AT

tq 0 0 −I A T
f q

AT
t f AT

j f 0 0 AT
f







ft

f j

fn

fq

f f


 (4.37)

Note, that the structure of the equation system in 4.28 is quite different to that of 4.37 due
to the fact, that the matrixA (see 4.25) is not symmetrical. Sinceλ is known, the only thing
that stops us from solving the system of equations with standard techniques are once more,
numerical problems. Nevertheless the number of equations may be reduced to a certain limit,
using Gaussian elimination.

The following derivation is by no means trivial. The equations and the order of substitution
have to be selected very carefully to maintain sparsity and to keep the computational effort
affordable. Even more, some of the intermediate terms appearing below may not be calcu-
lated explicitly. It is, however, possible to calculate the product of this term with a vector
using the fact that the multiplications of matrices and vectors are associative.

Using equation 4.37 as a starting point, following equations may be derived.

f f = (λBT
f −AT

f ) \
LU

(AT
t f ft +AT

j f f j) (4.38)

ft = (λBT
t −AT

t ) \
LU

(AT
jt f j +AT

NT fn +AT
qt fq +AT

f t f f ) (4.39)

f j = (λBT
j −AT

j ) \
GE

(AT
t jft +AT

f jf f ) (4.40)

Inserting 4.38 into 4.39 and 4.40 leads to

ft = (λBT
t −AT

t ) \
LU

[AT
jt f j +AT

NT fn +AT
qt fq +AT

f t(λBT
f −AT

f ) \
LU

(AT
t f ft +AT

j f f j)]

= (λBT
t −AT

t −A f tt f ) \
LU

[(AT
jt +A f t j f )f j +AT

NT fn +AT
qtfq]

= Ab jf j +AbNT fn +Abqfq (4.41)
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where

A f tt f = AT
f t(λBT

f −AT
f ) \

LU

AT
t f

A f t j f = AT
f t(λBT

f −AT
f ) \

LU

AT
j f

Ab j = (λBT
t −AT

t −A f tt f ) \
LU

(AT
jt +A f t j f )

AbNT = (λBT
t −AT

t −A f tt f ) \
LU

AT
NT

Abq = (λBT
t −AT

t −A f tt f ) \
LU

AT
qt

and

f j = (λBT
j −AT

j ) \
GE

[AT
f j(λBT

f −AT
f ) \

LU

AT
t f ft +AT

f j(λBT
f −AT

f ) \
LU

AT
j f f j +AT

t jft ]

= (λBT
j −AT

j ) \
GE

[(A f jt f +AT
t j)ft +A f j j f f j] (4.42)

where

A f jt f = AT
f j(λBT

f −AT
f ) \

LU

AT
t f

A f j j f = AT
f j(λBT

f −AT
f ) \

LU

AT
j f

Inserting 4.41 into 4.42 leads to

f j = (λBT
j −AT

j −A f j j f ) \
GE

[(A f jt f +AT
t j)(Ab jf j +AbNT fn +Abqfq)]

= (λBT
j −AT

j −A f j j f − (A f jt f +AT
t j)Ab j) \

GE

(A f jt f +AT
t j)(AbNT fn +Abqfq)

= AJnq(AbNT fn +Abqfq) (4.43)

where

AJnq = (λBT
j −AT

j −A f j j f − (A f jt f +AT
t j)Ab j) \

GE

(A f jt f +AT
t j)

Equation 4.43 expressesf j as a function offq andfn. These vectors depend also onf f ,ft and
f j.

fn = −AT
N \

PCG

AT
qnfq (4.44)

fq = AT
tqft +AT

f qf f (4.45)

Inserting 4.38 into 4.45 leads to

fq = AT
tqft +AT

f q(λBT
f −AT

f ) \
LU

(AT
t f ft +AT

j f f j)

= AT
tqft +A f qt f ft +A f q j f f j

= (AT
tq +A f qt f )ft +A f q j f f j (4.46)
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where

A f qt f = AT
f q(λBT

f −AT
f ) \

LU

AT
t f

A f q j f = AT
f q(λBT

f −AT
f ) \

LU

AT
j f

Inserting 4.41 into 4.46 leads to

fq = (AT
tq +A f qt f )(Ab jf j +AbNT fn +Abqfq)+A f q j f f j

= [(AT
tq +A f qt f )Ab j +A f q j f ]f j +(AT

tq +A f qt f )(AbNT fn +Abqfq) (4.47)

Inserting 4.43 into 4.47 leads to

fq = ([(AT
tq +A f qt f )Ab j +A f q j f ]AJnq +(AT

tq +A f qt f ))(AbNT fn +Abqfq)

= AQN fn +AQQfq (4.48)

where

AQN = ([(AT
tq +A f qt f )Ab j +A f q j f ]AJnq +(AT

tq +A f qt f ))AbNT (4.49)

AQQ = ([(AT
tq +A f qt f )Ab j +A f q j f ]AJnq +(AT

tq +A f qt f ))Abq (4.50)

Equation 4.48 is the base of the calculation of the left eigenvector, since the set of equations
4.48 and 4.44

fq = (I −AQQ)\AQN fn

fn = −AT
N\AT

qnfq (4.51)

leads to

0 = [AT
N +AT

qn(I −AQQ)\AQN ]fn (4.52)

which is not yet tractable from a computational point of view. The easily drawn backslash is
an unsurmountable obstacle at the time being. Knowing this, it’s not at all obvious, that the
matricesAQN andAQQ in 4.48 may be calculated in a efficient manner. On the contrary, a de-
tailed investigation shows, that the two matrices cannot be calculated with reasonable effort.
However, an iterative approach to equation 4.48 does not require the explicit values ofAQN

andAQQ. It is much easier to calculateA1\(A2f) which can be reduced toA1\f̃ instead of
A1\A2. This implies, that some of the above mentioned matrices cannot be given explicitly,
but the resulting vector of a matrix/vector multiplication may be calculated nevertheless.

The final algorithm looks as follows.
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Algorithm 4.7: Left Eigenvector

1. fn,k = en or any starting guess

2. fq,k = eq or any starting guess

3. fq,k+1 = AQN fn,k +AQQfq,k (4.48)

4. fn,k+1 = −AT
N \

PCG

AT
qnfq,k+1 (4.44)

5. go back to step 3 until convergence offq andfn is reached.

6. f j,k+1 = AJnq(AbNT fn +Abqfq) (4.43)

7. ft,k+1 = Ab jf j,k+1 +AbNT fn,k+1 +Abqfq,k+1 (4.41)

8. f f ,k+1 = (λBT
f −AT

f ) \
LU

(AT
t f ft,k+1 +AT

j f f j,k+1) (4.38)

9. fq,k+2 = (AT
tq +A f qt f )ft,k+1 +A f q j f f j,k+1 (4.46)

10. go back to step 4 until convergence off f ,ft andf j is reached.

The steps 9 and 10 are necessary because the coupling between the equations is not strong
enough to give good results after the first iteration. The reason lies in the large variety of
matrix sizes involved.A j is smaller than 100x100 andA f on the other hand is more like
50’000x50’000. These uneven sizes are mandatory to overcome the loss of sparsity during
sub-calculations but lead to a weak coupling between some of the equations.

Naturally, the results for the left eigenvector will never be better, than the quality of the
eigenvalue taken from the right eigenvector calculation.

4.7 Regional Modes

The algorithm 4.6 is not specific to the calculation of the global mode. The control over
the mode calculated lies in the starting guess [λ0,e0]. Therefore it is possible to find regional
oscillations with a corresponding starting guess, i.e. the eigenvector contains the information
if an oscillation is global or regional in its shape, the starting guess for regional oscillations
must therefore also have the shape of a regional oscillation.

The complex structure ofA prohibits the convergence of the algorithm if the starting guess
is not within a relatively close vicinity of the solution. Therefore it is necessary to calculate
a starting guess for the regional neutronic eigenvector˜en,0 from the higher harmonics of the
static nodal equation A.36

ϕ̄1n =
∑6

m=1

(
Y1,nm + β̃ν2Σ f 2

Σa2
Y2,nm

)
ϕ̄1m

∑6
m=1(X1,nm + β̃ν2Σ f 2

Σa2
X2,nm)−Σa1(k∞ −1)

≡
6

∑
m=1

Anmϕ̄1m (A.36)
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where n denotes the number of the node and m stands for the six spatial neighbors. The value
k in the matrixAnm is taken from the steady state core simulator of the NPP.

The starting guesses for the regional calculation are the dominating eigenvectors ofAnm.
These vectors represent the neutronic modes of the reactor. The eigenvectors of the relatively
small matrixAnm are calculated by the built in functions of MATLAB.

Applying these good starting guesses, it is possible to use algorithm 4.6 as in the global case.
To make absolutely sure, that the algorithm converges to a regional solution, the matrices
A jt ,A j,A j f ,A f j,At j and the vectorej are assumed to be zero. Physically this means, that
the regional oscillation may not be seen from the outside of the reactor, since the core flow
is not oscillating.

The left eigenvector of the regional oscillation is calculated in the same manner as for the
global mode. Actually, the calculation comes much cheaper in computer time, since, as stated
before, a significant number of matrices may be assumed to be zero.


