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5.1 Measurement Database

MATSTAB was validated against a large number of measurements in seven reactors situated
at three different sites. While the next chapter describes the results of the validation, this
chapter explains how MATSTAB differs from other codes, and how this difference may be
used to produce new insights.

As a base for these explanations the measurement series conducted in Leibstadt in 1990
(cycle 7)[12] and 1993 [86] are chosen. These measurements were very thoroughly prepared
and covered a wide range of operating points. Even more, the detailed post analysis showed
regional oscillations in 1990.

The fifth operating point (45% power, 28% core flow) from the 1993 measurement series
(see also Section 6.2.3) showed global oscillations and served as reference case for many of
the following plots.

5.2 Displaying Three Dimensional Variables

MATSTAB represents the reactor with a detailed nodalization scheme and a respectable
number of equations and variables. In consequence, a huge amount of data results from the
calculations and must be presented carefully to give some insight.

All calculated parameters and variables may be stored for later investigations. The power
distribution is presented as an example because its axial shape has undoubtedly an important
influence to the stability of the reactor.

Figure 5.1 shows a normalized power-density distribution of the Leibstadt reactor measured
during the stability test in 1993 [86]. The colors represent the axially averaged values. Each
color square represents a fuel assembly. The larger squares, containing 4 fuel assemblies
are called super cells, or controlled cells, in case a cross shaped control rod is allocated in
between. The numbers plotted within a super cell are therefore the percentage of which a
control rod is withdrawn from the core (fully withdrawn rods are not indicated).

To add the valuable information contained in the axial shapes, it is possible to select a couple
of channels (indicated with X in Figure 5.1) and plot their axial values (Figure 5.2). The four
chosen channels show a very different axial power distribution. The fuel assemblies in the
center and at the boundaries of the core show a flat distribution.

The assembly in the outer part of the core is clearly bottom peaked while the controlled
assembly is top peaked since the control rod enters from the bottom.

Figure 5.3 shows the radially averaged axial power density distribution of all super cells.
This Figure gives a good impression of the calculated power density distribution in the core.
Any other physical property may be displayed in the same manner. For example, the void
content, liquid flow, neutron flux, fuel temperature and so on.
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Figure 5.1: Axially Averaged Power Density Distribution of the Leibstadt Reactor
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Figure 5.2: Axial Power Shapes in Individual Channels of the Leibstadt Reactor
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Figure 5.3: Axial Power Shapes in the Leibstadt Reactor

5.3 Eigenvectors

It was stressed several times before that a wealth of information may be gained from an
investigation of the left and right eigenvectors of the dominating oscillation modes. The
availability of the eigenvectors which come naturally from the calculation of the eigenvalue
(see Section 4.3 Equation 4.6), are a major advantage of MATSTAB as will be shown in the
following pages.

Equation 2.25 describes the mode j of a chosen variable∆x j(τ) in terms of the dominating
eigenvalueλ j, the corresponding left and right eigenvectorsf j andej and the value at time
τ = 0 of the mode considered.

∆x j(τ) = eje
λ jτ [fT

j ∆x j(0)] (2.25)

5.3.1 Right Eigenvector

The right eigenvectorej describes the relative magnitude and phase of the dominating mode
∆x j(τ) of the state variablex(τ). Since botheλ jτ andfT

j ∆x j(0) are scalars, the shape of the
mode∆x j(τ) is entirely defined byej.
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Figure 5.4: Void and Thermal Neutron Flux Phasors in One Channel

The complete eigenvectorehas a very large number of components, therefore, only its com-
ponents may be displayed in a reasonable manner.

If just one channel is investigated, it is possible to see the gain as well as the phase shift.
The phasors in Figure 5.4 show the phase and gain of the void fraction and of the thermal
neutron flux, for all 25 nodes in a specific channel. One can see, that the gain is larger in the
bottom part of the reactor and smaller in the upper part. It is also easy to spot, that there is
a phase shift of 180 degrees for the void component whereas the phase of the thermal flux
component is only shifted by≈ 60 degrees from bottom to top. The channel was selected
randomly and represents the normal situation in a channel. Figure 5.5 shows the absolute
value of the eigenvector component that corresponds to the thermal flux.

5.3.2 Left Eigenvector

Equation 2.25 also clarifies the role of the left eigenvectorf j. The left eigenvectorf j deter-
mines how the mode is excited by the initial conditions. Note that if∆x j(0) = k∗ej for some
scalar k, then only the mode j is excited,∆x(τ) = ∆x j(τ), sinceFTE = I by definition 2.18.
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Figure 5.5: Thermal Flux (Absolute Value) of the Right Eigenvector (Axially Averaged)

5.4 The Contributors to the Eigenvalue/Decay Ratio

The real value of the left eigenvectorf lies in the possibility to broaden the decay ratio
concept. The following section outlines a methodology to calculate the contribution of any
model component to the eigenvalue/decay ratio and hence to the stability of the system.
It is possible to analyze the contribution of any model section, channel, node, equation or
parameter to the eigenvalue and hence stability of the system.

The eigenvalue and consequently also the decay ratio, is no longer only one number de-
scribing the overall behavior of the coupled system. The number is composed from different
components, each of which has its own physical meaning. For example, it is possible to
calculate the contribution of each fuel assembly to the eigenvalue or the contribution of a
specific equation (e.g. slip) or section (e.g. riser) in the model.

In MATSTAB, the dominating eigenvalueλ is obtained directly during the iterative calcula-
tion of the right eigenvector. However, it is instructive to represent the eigenvalue by means
of both (left and right) eigenvectors.
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Multiplying the basic equation of the generalized eigenvalue problem (Equation 2.15)

Ase= λBe (2.15)

from the left with the left eigenvector, leads to

fT Ase = λfT Be (5.1)

λ =
fT Ase
fT Be

(5.2)

λ = fT Ase (5.3)

becausefT Be=1 due to the scaling offT . It is interesting to investigate Equation 5.3 a bit
further.

λ = fT Ase (5.4)

=
n

∑
k=1

fk

n

∑
l=1

ak,lel (5.5)

= ∑
k,l

fkak,lel (5.6)

λ =
[
1 . . . 1

]
f1a1,1e1 . . . f1a1,nen

... fkak,lel
...

fnan,1e1 . . . fnan,nen






1
...
1


 (5.7)

The introduced matrix

Aλ =




f1a1,1e1 . . . f1a1,nen
... fkak,lel

...
fnan,1e1 . . . fnan,nen


 (5.8)

has very interesting properties. The first and most obvious is that the sum of all matrix
elements equals the eigenvalueλ.

But furthermore, the entries fkak,lel of the matrixAλ represent each a dependency of a certain
variable in a certain equation in a certain node. Since the number of these entries is large
(≈ 106) and dependent on the nodalization scheme, it is reasonable to sum up some subsets.
For example, one can add all summands within the different model sections; neutronics,
thermal-hydraulics or the sections outside the core (steam dome, downcomer, etc.). Since
the reactor core is a very interesting section, one should also investigate the contributions of
the different fuel channels.

Finally, it is also possible to sum up and analyze the contribution of each model equation
(row in the matrix) or each variable (column in the matrix). When summing over a node, a
channel or a model section, the contribution of e.g. the void fraction equation differs natu-
rally from the contribution of the void fraction variable. Nevertheless, when summing over
the complete model, the contributions of equations and their corresponding variables is the
same. The reason lies in the fact that the sum over the row j in the matrixAλ equals the sum
over the column j.
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∑
row j

Aλ =
n

∑
l=1

f jaj,lel (5.9)

= f j

n

∑
l=1

aj,lel (5.10)

= f jAs,row je (5.11)

= f jλej (5.12)

becausee is an eigenvector ofAs and

∑
column j

Aλ =
n

∑
k=1

fkak, jej (5.13)

= ej

n

∑
k=1

fkak, j (5.14)

= ejfT As,column j (5.15)

= ejλf j (5.16)

= ∑
row j

Aλ (5.17)

The expressionλ f je j is in principle the same as the expressionf je j which is well known
from control theory as the participation factor. This property of the matrixAλ is very inter-
esting for further investigations, but should not mislead to the conclusion that the matrix is
symmetric. As stated before, only the sum over the complete model is the same for equations
and variables. When summing over nodes, channels, etc. the results differ.

Representation of the Decay Ratio as a Product of Contributing Factors

The sum in Equation 5.6 is easy to translate into a product which leads to the decay ratio.
As shown in Chapter 2, the decay ratio can be written as

DR = e
2πσ
ω (2.27)

= e

(
2π
ω ∑

k,l
real(fkak,lel)

)
(5.18)

= ∏
k,l

e
2π
ω real( fkak,lel) (5.19)

≡∏
k,l

drk,l (5.20)

The representation of the eigenvalue as a sum over different contributions seems to be more
natural than this representation of the decay ratio as a product of different contributions.
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Especially because unimportant objects are 1 in the product representation, which feels a bit
strange when speaking about decay ratios. Therefore, the next few sections only deal with
the contributions to the eigenvalue where an unimportant object, as expected, contributes
with 0.

5.4.1 Contribution of the Model Sections to the Eigenvalue

The Figure 5.6 shows the contribution of the different model sections (outside of the core,
thermal-hydraulics, neutronics, flow distribution model, pumps and system pressure) to the
real part of the eigenvalue; i.e. the sum of the section contributions equals the real part of
the eigenvalue. The four colored bars represent different operating points from the Leibstadt
measurement series conducted in 1993 (see Table 6.6 on page 120). For the most stable case,
MATSTAB calculated a decay ratio of 0.42 and for the least stable case 1.02.

Unfortunately, Figure 5.6 does not identify a special section as the driving force of instability.
The contributions of all sections diminish in a similar way for less stable operating points.
The contributions and therefore also the changes in the thermal-hydraulic and neutronic part
dominate, however, the behavior of the reactor. In the second plot of Figure 5.6, the contri-
bution of the thermal-hydraulic and neutronic part of the model are added and represented
as the contribution of the core. The combined contribution is negative and, therefore, stabi-
lizing. The stabilizing contribution of the thermal-hydraulics over-compensates the destabi-
lizing contribution of the neutronic part. However, the difference becomes smaller for less
stable operating points. In other words, when moving from a stable to a less stable operating
point, the contributions decrease, but the reduction in the thermal-hydraulic part is larger
than the reduction in the neutronic part, hence, the reactor becomes overall less stable.

Figure 5.7 shows this trend. The dashed region, representing the difference between the
thermal-hydraulic and neutronic part, diminishes in the less stable region. The interpreta-
tion of the absolute value of the contributions is, however, difficult. There are not enough
measurements points available to relate the magnitude of a single contribution to the reactor
state.

Since in Forsmark always measures the same operating point during start up, it is not possible
to generate the corresponding plots for Forsmark. Therefore, some (numerical) studies for
different operating points in different power plants are recommended as future work. The
necessary steady-state distribution files need, however, to be prepared by the plant, since
POLCA is not generally available.

It remains to observe, that the “decay ratio” and “thermal-hydraulics” lines in Figure 5.7
are roughly parallel. This simple relationship between the decay ratio and the contribution
of the thermal-dynamics may very well be a coincidence, since only four operating points
are involved, but further investigations when more operating points are available are recom-
mended.
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Figure 5.6: Contribution of Each Model Section of the Reactor for Different Operating Points
(for 5 and 6 Model Sections)
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Figure 5.7: Comparison Between the Decay Ratio and the Contributions of the Reactor Core

5.4.2 Contribution of the Fuel Assemblies to the Eigenvalue during an Ap-
proach to Instability

In addition to the analysis of the contributions of different model sections, it is also inter-
esting to investigate the contributions to the eigenvalue of the different fuel assemblies in
the core. This is done in this section by examining a series of operating points in order of
decreasing stability.

Figure 5.8 shows the power density of the Leibstadt reactor for a very stable operating point
(DR ≈ 0.1). The corresponding plot with the contribution to the real part of the eigenvalue
of the different fuel assemblies is shown in Figure 5.9. The colors represent the axially
averaged value in each channel. Note that the sum of all channel values (times 25 nodes)
added to the values in each node outside of the core, equal the real part of the eigenvalue of
the dominating mode. Negative values have a stabilizing influence, whereas positive values
have a destabilizing influence.
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Figure 5.8: Power-Density Distribution for 77% Power and 70% Core Flow in Leibstadt
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Figure 5.9: Contribution of Each Channel to the Eigenvalue for 77% Power and 70% Core
Flow in Leibstadt
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Figure 5.10: Power-Density Distribution for 68% Power and 45% Core Flow in Leibstadt
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Figure 5.11: Contribution of Each Channel to the Eigenvalue for 68% Power and 45% Core
Flow in Leibstadt
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While the outer ring of fuel assemblies in the core are more or less neutral (low leakage strat-
egy and ,therefore, low power density), there exists a ring of high-power-density assemblies
with a large stabilizing effect (dark blue). These are the assemblies with a relative flat power
density distribution. The strongly bottom-peaked assemblies with a high power density in
the center of the core are destabilizing but largely outnumbered. As a result, the core is very
stable.

The Figures 5.10 and 5.11 show the same information (power density, contribution to the
real part of the eigenvector respectively) for the next operating point in the Leibstadt mea-
surement series from 1993. The operating point is a bit less stable (DR≈ 0.42) and it may
be observed, that the radial distribution of the eigenvalue contributions became flatter. The
above mentioned ring of stabilizing assemblies breaks up, and the destabilizing assemblies
are found closer to the center of the core. The assemblies at the border of the core remain
close to zero but move from a slightly destabilizing tendency to a slightly stabilizing ten-
dency.

Figures 5.12 and 5.13 represent the next operating point (DR≈ 0.56) in the measurement se-
ries. The break up of the “stabilizing ring” advances further, but the destabilizing assemblies
in the center become less distinct. However, the latter effect is overshadowed by the former,
since overall, the reactor is less stable. The contributions from the model section outside the
core, remained roughly the same, as may be checked in Figure 5.6.

Figures 5.14 and 5.15 represent again the next operating point (DR≈ 0.65) in the measure-
ment series. The tendency is the same as in the figures before, with the exception, that the
destabilizing assemblies in the center decreased in number but not in scale of the contribu-
tion.
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Figure 5.12: Power-Density Distribution for 61% Power and 40% Core Flow in Leibstadt
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Figure 5.14: Power-Density Distribution for 59% Power and 37% Core Flow in Leibstadt
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Figure 5.15: Contribution of Each Channel to the Eigenvalue for 59% Power and 37% Core
Flow in Leibstadt
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5.4.3 The Core of an Unstable Operating Point

Finally, Figures 5.16 and 5.17 show an unstable operating point (DR≈ 1.0). The new aspect
is, that the destabilizing center vanished completely, but two point-symmetric areas with
a destabilizing effect appeared (orange). The radial shape of the distributions became rea-
sonably flat with the exception of the two stabilizing areas (dark blue). It needs not much
fantasy, to imagine a half core oscillation with the symmetry line from top left to bottom
right, or from bottom left to top right. Even so, no regional oscillations were observed, this
is in agreement with the high decay ratios for regional oscillations predicted by MATSTAB
for the very same measurement series (see Table 6.6 on page 120).

One more interesting detail is that in contrast to the section-wise representation, in the
assembly-wise representation not all contributions decrease (absolute value), the less sta-
ble an operating point is. The contribution of some fuel assemblies actually grows. The most
extreme fuel assemblies (dark blue) in Figure 5.17 have a very large negative (stabilizing)
contribution to the eigenvalue. Nevertheless, these assemblies are at the place where the
regional oscillations reach their maxima and minima.

Figure 5.18 shows the part of the right eigenvector that represents the neutron flux for the
dominating (global) mode at unstable operating conditions. According to Equation 2.25,
this is also the driving force behind the time development. The arrows in the plot represent
the phase and amplitude of the oscillation for some selected nodes. The black arrows are
calculated by MATSTAB whereas the white arrows are measured with the LPRMs (Local
Power Range Monitor for neutron flux). A detailed description on how the black and white
arrows are calculated may be found in Section 6.1.2. In this representation, the absolute
values of phase and amplitude have no physical meaning, only relative values are of interest.

Figure 5.19 shows the same information for the first regional mode. The plot shows that the
amplitudes close to the symmetry line and close to the border of the core are, as expected,
very small. The white arrows represent again the same measurement information as in the
figure above. However, the scaling is different. For these two pictures, the scaling is done in
such a way, that the first calculated phasor looks exactly to the right.

Since the calculations for this case predict a similar decay ratio for the global as well as
for the regional case, it may be assumed, that the measured phasors contain a substantial
regional component. It would therefore be prudent to add the calculated contributions from
the global and regional modes. A comparison of these compound phasors should give even
better agreement with the measurement data which naturally contains the superposition of
all modes. It would also be interesting to compare the difference in amplitude of the global
and regional component. Unfortunately, this cannot be achieved in a simple way, because
MATSTAB has no information on how to scale the vectors. The basic problem is, that the
eigenvectors may be multiplied with any complex number, and still stay the same eigenvec-
tors. If the initial condition of the modes were known, Equation 2.25 could have been used.
However, this is not the case.



74 CHAPTER 5. INTERPRETATION AND VISUALIZATION OF RESULTS

 0.24

 0.37

 0.50

 0.63

 0.76

 0.90

 1.03

 1.16

 1.29

 1.42

 1.56
1e0BOC10 Stability Test  11−SEP−93 21:21:18

LEIBSTADT POWER               
meanNod 1:25

 0

25  0 25

 0  0  0  0

25  0 25

 0

 2  4  6  8 10 12 14 16 18 20 22 24 26 28 30

 2

 4

 6

 8

10

12

14

16

18

20

22

24

26

28

30

Figure 5.16: Power-Density Distribution for 45% Power and 28% Core Flow in Leibstadt,
Reference Case

−9.45

−7.56

−5.67

−3.78

−1.89

 0.00

 1.89

 3.78

 5.67

 7.56

 9.45
1e−3BOC10 Stability Test  11−SEP−93 21:21:18

LEIBSTADT MATLAB:lambda 
meanNod 1:25

 0

25  0 25

 0  0  0  0

25  0 25

 0

 2  4  6  8 10 12 14 16 18 20 22 24 26 28 30

 2

 4

 6

 8

10

12

14

16

18

20

22

24

26

28

30

Figure 5.17: Contribution of Each Channel to the Eigenvalue for 45% Power and 28% Core
Flow in Leibstadt, Reference Case
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Figure 5.19: Comparison of MATSTAB and Measurement Point P45F28 in Leibstadt, Re-
gional Case
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In principle, the amplitudes could be approximately calculated if one does a least-squares
fitting and solves the following equation set forC1 andC2.

C1∗MATSTABglobal +C2∗MATSTABregional = MEASUREMENTLPRM (5.21)

The uncertainty in the measurement itself, and the small number of LPRMs make this ap-
proach too unreliable to be of use.

A comparison between calculated and measured inlet flow data was done, but again the
large uncertainty in the measurement data made a meaningful comparison impossible. For
example, the relevant frequency of the oscillation could not be detected from Forsmark’s
inlet flow measurements.

5.4.4 Further Analysis Around an Unstable Operating Point

The Figures 5.20-5.25 show a brief analysis of the unstable operating point P45F28 shown in
Figure 5.16 on page 74. While the reference case corresponds with an operating point mea-
sured in 1993 in Leibstadt, the other operating points are just a numerical investigation and
were not realized with the reactor. All decay ratios and frequencies are listed in Table 5.1.

Case Description D
R

G
lo

ba
l

D
R

R
eg

io
na

l

F
R

G
lo

ba
l

F
R

R
eg

io
na

l

Reference Case: Power 45% Core Flow 28%1.02 1.03 0.42 0.45
Moderate Swap of the Control Rods 0.94 0.94 0.41 0.43
Extreme Swap of the Control Rods 1.23 0.78 0.44 0.43
Power Increase of 5% 1.13 1.18 0.42 0.45

Table 5.1: Investigation Around the Operating Point P45F28 with Power 45% and Core Flow
28% in Leibstadt

Figures 5.20 and 5.21 show the reactor after a moderate swap of control rods i. e. a moderate
change in the power density distribution. The core power and the core flow were kept con-
stant. One can observe that in comparison to the reference state (Figure 5.16) the extreme
assemblies became fewer, but even more negative (down to -0.035 compared to -0.00945).
Both the global and regional oscillation were stabilized, since in each quarter of the core, a
control rod was inserted 25 percent. These control rods changed the radial power-shape just
enough to make the core stable by a narrow margin.

Figures 5.22 and 5.23 show the reactor after a major swap of control rods. The rods are now
inserted in the periphery rather than the center. The concentration of the high power assem-
blies in the center leads to a very unstable reactor (DR=1.23). The dominant fuel assemblies
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Figure 5.20: Power-Density Distribution After a Swap of Control Rods
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Figure 5.21: Contribution of Each Channel to the Eigenvalue After a Swap of Control Rods
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Figure 5.22: Power-Density Distribution After a Major Change in Control Rod Pattern
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Figure 5.24: Power-Density Distribution After a Positive Change in Power
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Figure 5.25: Contribution of Each Channel to the Eigenvalue After a Positive Change in
Power
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are larger in number, but smaller in their contribution (up to -0.0108 compared with -0.035
for the moderate swap). It is easy to spot that the high power density in the center of the
reactor suppresses regional behavior, and that the global mode dominates. The numbers in
Table 5.1 also give a clear verdict. DR global = 1.23 and DR regional = 0.78.

Figures 5.24 and 5.25 show the reactor after a power increase of five percent above the base
case. Pulling the control rods while keeping the core flow constant, shifts the operating point
of the reactor to a less favorable part of the power-flow map. Consequently, the decay ratio
grew from 1.02 (reference case) to 1.13. In agreement with the measurement series shown
in Figures 5.8-5.17, the stabilizing assemblies tend to become smaller in number but larger
in scale for a less stable operating point.

Figures 5.26 and 5.27 show a comparison of the axial distribution of the eigenvalue contri-
butions for the stable operating point (Figure 5.8) and the unstable reference case (Figure
5.16), respectively. The interesting information is that the first few nodes from the bottom
normally give a positive contribution regardless whether the overall contribution of the fuel
assemblies is positive or negative. This is expected, since the boiling boundary is around
node four or five.

Figures 5.28 and 5.29 show the contribution to the eigenvalue from the same four fuel as-
semblies for the two operating points and confirm this observation. The four assemblies are
chosen to be extreme cases in both plots. The location (coordinates) of the assemblies is
plotted on the left side of the figures.
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5.4.5 Contribution of Selected Equations and Variables to the Eigenvalue

Taking the level analysis one step further, it is possible to show for each equation or variable
its contribution to the real part of the eigenvalue. The difference between the equation-wise
and the variable-wise representation is, that in the former case, the rows of the matrixAλ
(Equation 5.7) are summed up, and in the latter case, the columns are summed up.

For example, the contribution of the void fraction equation shows how the void fraction gets
affected by the other variables. Figure 5.30 shows, how much the void fraction equation in
contributes to the real part of the eigenvalue.
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Figure 5.31: Contribution of the Variable Void Fraction to the Eigenvalue

contribution of other equations. This would actually imply, that the information present in
these equations is not needed in the model. Further investigations are necessary to support
this conclusion.

5.4.6 Analysis of Operating Points based on Eigenvalue Contribution Plots

To overcome the difficulties in interpreting the many thousands of contributions to the real
part of the eigenvalue, as encountered in the previous sections of this chapter, the matrixAλ
from Equation 5.7

Aλ =




f1a1,1e1 . . . f1a1,nen
... fkak,lel

...
fnan,1e1 . . . fnan,nen


 (5.22)

is examined a bit further. To start width, two MATSTAB calculations with nearly identical
operating points are compared. The only difference between the two calculations, is the
pressure drop in the riser (input parameter VHO of MATSTAB). The reference calculation
is the Leibstadt case presented in Figure 5.14 where the pressure drop over the riser is set to
its default value (VHO=-7.0). The resulting decay ratio is 0.6475. The second case is exactly
the same, but VHO=-20.0 and the resulting decay ratio is 0.6397.
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Figure 5.32 shows the contribution of all equations in all nodes to the real part of the eigen-
value. The x-axis represents the equation number, and the y-axis represents the contribution
to the eigenvalue. The ordering of the equations is the same as in the matrixAλ. A detailed
description can be found in Table B.4 on page 161. The total number of equations is around
200’000. Since the difference in the two cases is very small, the red and the blue line in the
plot can only be distinguished at a few places.
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Figure 5.32: Contribution to the Real Part of the Eigenvalue: EquationsThe �rst equation in the matrix, the system pressure, leads to two clearly different values
in the two compared calculations. This is not surprising, since the pressure drop over the
riser has changed. The second large deviation in the two calculations is the very sharp peak
around equation 110’000. The extrema in the reference calculations are smaller than for the
second case. After a quick check in Table B.4 on page 161 one can identify the peak as the
�ow distribution model. A more detailed analysis of this deviation follows later.

The Figure 5.33 shows the cumulative contribution to the eigenvalues previously plotted in
Figures 5.32. The cumulative sum of, for example, 1, 2, 3, 4 is de�ned as 1, 1+2, 1+2+3,
1+2+3+4. Since the curve plotted in Figure 5.32 represents the sum of all elements inA

�

,
the last point in the graph equals the real part of the eigenvalue.

As mentioned in the comment to Figure 5.26-5.29, the three nodes closest to the bottom in
a fuel assembly tend to have a positive contribution to the eigenvalue whereas the remaining
nodes have a negative contribution. This observation is very easy to spot in the cumula-
tive plots. It can also be easily observed, that the change in the pressure drop stabilizes the
thermal-hydraulics (the blue line becomes more negative at the beginning) and destabilizes
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Figure 5.33: Cumulative Contribution: Equations
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Figure 5.34: Cumulative Contribution: Equations (Using the Same Eigenvector)
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Figure 5.35: Difference of the Cumulative Contribution: Equations
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Figure 5.36: Difference of the Cumulative Contribution: Variables
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the neutronics (larger positive contribution of the blue line in the second half of the plot).
All together, both graphs end with a very similar eigenvalue.

A good impression of the real differences between the two cases can be achieved, if the
eigenvectors from one of the two cases is used to calculateAV HO=−7

λ andAVHO=−20
λ . In this

case, the difference between the eigenvectors is neglected, and only the difference between
the matrices is analyzed. The result is shown in Figure 5.34. The read and the blue graphs
are now so close, that only a plot which shows the difference of the graphs may give more
information. Figures 5.35 and 5.36 hence show the difference of the red and the blue graph
in Figure 5.34. The plots confirm the observation that the two MATSTAB calculations differ
mainly in the equations/variables around 110’000.

0 50 100 150 200 250 300 350
−
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Figure 5.38: Difference of the Cumulative Contribution: Mass Flow Rate
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In concluding, it may be said, that the approach outlined above based on the cumulative
contributions is an interesting new way to analyze the stability behavior of the reactor and
pinpoints to sources of instability. The simple displays used identified correctly the sources
causing changes in the eigenvalue/decay ratio and affecting stability.

5.4.7 Comparison of Different Operating Points in Leibstadt

Figure 5.40 shows the cumulative sums of the rows of the matrixAλ for the Leibstadt mea-
surement series from 1993. It can be seen very clearly that the stabilizing thermal-hydraulic
contribution (left side of the plot) diminishes for a less stable operating point; the destabi-
lizing contribution of the neutronics (right side of the plot) also diminishes. However, the
overall effect is destabilizing since the reduction of the stabilizing thermal-hydraulics is
larger. This observation is identical with the conclusion drawn from Figure 5.6.

Figure 5.41 shows the similar plot for the measurement series conducted in 1990. The con-
tribution of the thermal-hydraulics to the eigenvalue behaves relatively systematic. The more
stable an operating point is, the more negative (stable) is the thermal-hydraulic contribution.
A bit more complex is the contribution of the neutronic part. Some of the graphs are convex,
while other graphs are concave. The explanation is, however, pretty simple. The shape of
the graph changes with the power density distribution. The change of control rods in the
numerical experiment changed also the power density distribution, and therefore the con-
tributions of the different fuel assemblies. Since the ordering of the equations is connected
with the location of an assembly in the core, shift from the contributions from the center to
the periphery, also changes the shape of the graph.

Concluding may be said, that the methods outlined in this chapter give a new angle to the
stability investigations. The results show good agreement with measurements and experi-
ences and seem to be promising. The proof, that completely new insights may be gained is,
however, still missing.
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Figure 5.40: Comparisons of Different Operating Points: Cycle 10
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5.5 Sensitivity Analysis

Even though the decay ratio and the frequency of the oscillation are a direct and obvious
description of the state of the reactor, the contained information is by far not complete. It is
by no means obvious or true, why the connection between the decay ratio and a change in
variable i.e. flow or power should be linear. Therefore, the decay ratio describes the stability
of the investigated state, but does not give the distance (margin) to instability in a practical,
“operational” manner.

One way to investigate the influence of a parameter p to stability is to evaluate many cases
with slightly different values of p. This approach is normally limited by the computer time
available. The MATSTAB model allows a much more efficient approach. The known eigen-
valueλ(p) is used to calculate the unknown eigenvalueλ(p+δp).

Consider the matrixA with the eigenvaluesλ1,λ2, . . . ,λn, right eigenvectorse1,e2, . . . ,en

and left eigenvectorsf1, f2, . . . , fn scaled in the way thatEF = I .

Differentiation of the generalized eigenvalue Equation 2.15

Aei = λiBei (2.15)

with respect to any parameter p yields

∂A
∂p

ei +A
∂ei

∂p
=

∂λi

∂p
Bei +λiB

∂ei

∂p
(5.23)

Multiplying by fT
i from the left

fT
i

∂A
∂p

ei +λifT
i B

∂ei

∂p
=

∂λi

∂p
fT
i Bei +λifT

i B
∂ei

∂p
(5.24)

and solving for the derivative of the eigenvalue leads to the important relation

∂λi

∂p
=

fT
i

∂A
∂p ei

fT
i Bei

(5.25)

From a calculated state with parameter p, the eigenvalue for the slightly different state with
the parameter p+δp can be deduced as follows.

λi (p+∆p) = λi (p)+


 fT

i (p) ∂A(p)
∂p ei (p)

fT
i (p)Bei (p)


 ·∆p (5.26)

This result is useful, because the stability margin of the new state is obtained without cal-
culating its eigenvalue from scratch. It is also one additional way to understand that the
information about the stability behavior of the reactor is contained in the eigenvectors.
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Example: Slip

One obvious application of Equation 5.26 would be for a small change in power. However,
a change in power would also affect many other variables, e.g. the void fractions. Therefore,
a new steady-state file from POLCA would be necessary and the effects of all other implied
changes would be superimposed upon those of the initial power change.

The Bankoff-Malnes correlation
wg = Swl +w0 (A.95)

relates the vapor velocitywg to the liquid velocitywl, using a slip factor S. This factor is not
expected to change in time. However, its value is not so easy to measure directly in a real
NPP. Therefore the uncertainty in the slip is very often used to fit the power-shapes of the
modeling code to the measured data.
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Figure 5.42: Influence of the Slip Parameterc1 S to the Radially Averaged Power-Density
Distribution

Figure 5.42 shows the radially averaged relative power-density distribution for the operat-
ing point considered (calculated by POLCA) compared to MATSTAB calculations using
different values forc1 in the slip correlation A.96.

S =
1−α
c1−α

(A.96)
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The influence of S (respectivelyc1) can be seen as clearly as the rather optimal value of
0.895 which is used normally by MATSTAB.

Equation 5.26 is now used to study the effect of a change in S (c1) on stability. The base
of the investigation is the operating point with 59% power and 4010 kg/s core flow from
the Leibstadt Cycle-ten measurement. The measured decay ratio was 0.65 and its frequency
was 0.50. Table 5.2 shows the influence of the slip parameter S upon the decay ratio and
frequency. All values from the sensitivity calculation were derived usingC1 = 0.895 as base
and∆C1 = 0.005 as deviation.

Full Calculation Sensitivity Anal.
Slip (c1) DR FR DR FR

0.885 0.6362 0.4321 0.6350 0.4323
0.890 0.6421 0.4340 0.6432 0.4339
0.895 0.6514 0.4356
0.900 0.6599 0.4373 0.6596 0.4372
0.905 0.6695 0.4387 0.6679 0.4389
0.910 0.6742 0.4402 0.6762 0.4405

Table 5.2: Decay Ratio and Frequency for Different Slip Values

The predictions of the sensitivity analysis show good agreement and lie within the accuracy
of the MATSTAB calculation itself. Even though this method is not usable for large steps, it
is possible to make a very quick judgment on how the change of a parameter may influence
the result.


