Investigating BWR Stability with a New Linear Frequency-Domain Method and Detailed 3D Neutronics

A Dissertation Submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH for the Degree of Doctor of Technical Sciences

presented by

PHILIPP HÄNGGI

Dipl. Phys. ETH born December 19, 1968 Citizen of Rickenbach (SO), Switzerland

accepted on the recommendation of

Prof. Dr. G. Yadigaroglu, examiner Prof. Dr. J. Blomstrand, co-examiner PD Dr. J. Halin, co-examiner

2001

Abstract

Using frequency-domain methods, sparse matrix techniques and advanced numerical algorithms a new computer program MATSTAB has been developed to predict the core stability characteristics of a boiling water nuclear reactor. The code uses the same thermalhydraulic model as the transient code RAMONA-3B and the same neutronic model as the online steady-state core simulator POLCA. This includes three-dimensional neutronics and an individual representation of each fuel assembly (no lumping).

The very large set of equations is linearized and leads to a generalized eigenvalue problem which is solved iteratively using a combination of Newton's method and sub-space decomposition. The tailor-made algorithm calculates the first few dominating eigenvalues (decay ratios) and their left and right eigenvectors. MATSTAB not only predicts global, but also regional oscillations. A comparison between the decay ratios of the two oscillation types allows to judge which mode will occur.

Using MATSTAB and the interface to the online steady-state core simulator POLCA, it is possible to predict the stability of the reactor core in its present state. A calculation with full spatial resolution (all fuel assemblies, 25 axial nodes) is performed within a few minutes on a standard personal computer.

The eigenvalues and eigenvectors may not only be used to calculate the decay ratio and oscillation frequency, but also to analyze the stability behavior of the coupled neutronic/thermalhydraulic system. A new method is introduced which allows to calculate and display the contribution to (in)stability of any part of the reactor model (fuel assembly, neutronics, thermalhydraulics, riser, pumps, etc.). It is also possible to display the contribution to (in)stability of any physical quantity (power-density distribution, void, pumps etc.). This allows to enter a new territory and possibly to gain new insights into the mechanisms behind instabilities. This new method is not yet explored in depth, but some simple judgments were already used to optimize the core design and control rod sequence with respect to stability during start up procedures in Forsmark.

The results of the code have been successfully validated against numerous stability measurements from the Forsmark, Oskarshamn (both in Sweden) and Leibstadt (Switzerland) plants. The predictions show good agreement with the measured data for all global oscillations in all the plants. The regional oscillations in Cycle seven of Leibstadt were clearly predicted by MATSTAB, but the specific values for the decay ratios were underestimated in a systematic way.

Zusammenfassung

Um die Kernstabilität eines Siedewasserreaktors vorherzusagen, wurde unter Einbezug von Frequenz-Raum-Methoden, schwach besetzten Matrizen und fortgeschrittenen numerischen Algorithmen das Computer Programm MATSTAB entwickelt. Das Programm benutzt die gleichen thermodynamischen Modelle wie das Transienten-Programm RAMONA-3B und das gleiche Neutronik-Modell wie der Online-Kernsimulator POLCA. Dies beinhaltet eine dreidimensionale Neutronik und eine explizite Modellierung jedes Brennelementes (keine Gruppenbildung).

Das sehr grosse Gleichungssystem wird linearisiert und führt zu einem verallgemeinerten Eigenwertproblem, das unter Verwendung der Newton-Methode und der Zerlegung in Unterräume iterative gelöst wird. Der eigens entwickelte Algorithmus berechnet die dominierenden Eigenwerte und deren zugeordnete linke und rechte Eigenvektoren. Dadurch ist MATSTAB in der Lage, nicht nur die globalen, sondern auch die regionalen Schwingungen vorherzusagen. Ein Vergleich der Dämpfungskonstanten (DR) der beiden Schwingungstypen erlaubt es zudem abzuschätzen welcher Schwingungstyp auftreten wird.

Verwendet man das in MATSTAB eingebaute Interface zum Online-Kernsimulator POLCA, kann man die aktuelle Kernstabilität berechnen. Ein Rechenlauf mit voller räumlicher Auflösung (alle Brennelemente, 25 axiale Knoten) dauert auf einem Standard Personal-Computer nur wenige Minuten.

Die Eigenwerte und Eigenvektoren dienen nicht nur zur Berechnung der Dämpfungskonstanten und der Frequenz der Schwingungen, sondern können auch zur Analyse des Stabilitätsverhaltens des gekoppelten Schwingungssystems (Thermohydraulik/Neutronik) herangezogen werden. Eine neue Methode wird eingeführt, die es erlaubt, den Beitrag von jedem Modellteil (Brennelement, Neutronik, Thermohydraulik, Pumpen usw.) zur (In)stabilität abzuschätzen und grafisch darzustellen. Es ist zusätzlich möglich, den Beitrag einzelner physikalischer Grössen (Leistungsdichte, Dampfblasen Anteil, Brennstofftemperatur usw.) zur (In)stabilität zu berechnen. Dadurch wird ein neues Forschungsfeld erschlossen, das möglicherweise zu neuen Erkenntnissen über den Mechanismus hinter den Instabilitäten führt. Die neuen Methoden sind derzeit noch nicht in voller Tiefe umgesetzt, aber erste einfache Ansätze wurden angewandt. Die Resultate sind in Forsmark eingesetzt worden, um die Kernbeladung und die Kontrollstab-Sequenz während des Anfahrens zu optimieren. Die Resultate von MATSTAB wurden erfolgreich anhand zahlreicher Messungen in Forsmark, Oskarsham (beide Schweden) und Leibstadt (Schweiz) überprüft. Die Vorhersagen zeigten in allen Kernkraftwerken gute Übereinstimmung, mit den gemessenen Daten für globale Schwingungen. Die regionalen Schwingungen, die im siebten Zyklus in Leibstadt aufgetreten sind, wurden qualitativ zwar eindeutig vorhergesagt, quantitativ jedoch auf systematische Art und Weise unterschätzt.

Contents

1	Intr	Introduction			
	1.1	Motivation			
	1.2	Previous Work			
		1.2.1 Selected Papers			
		1.2.2 Different Types of Computer Codes			
	1.3	The Scope of this Work			
2	The	Concept Behind MATSTAB			
	2.1	The Central Equations			
		2.1.1 Linearization			
		2.1.2 Sparse Matrix Techniques			
		2.1.3 Eigenvalues and Eigenvectors			
	2.2	The Structure of MATSTAB			
		2.2.1 Input Data			
		2.2.2 Constructing the System Matrix \mathbf{A}_s			
		2.2.3 Eigenvalue Calculation			
		2.2.4 Visualization			
3	The	Model 23			
	3.1	Choosing the RAMONA Model			
		3.1.1 Nodalization Scheme			
		3.1.2 Inconsistencies with the POLCA Model			
	3.2	Neutron Kinetics and Power Generation			
		3.2.1 Fast and Thermal Neutron Flux			
		3.2.2 Delayed Neutrons			
	3.3	Thermal Conduction			
	3.4	Thermal-Hydraulics			
	3.5	Summary			
4	Calo	culation of the Key Parameters 35			
	4.1	The Numerical Problem			
	4.2	Solving $\mathbf{A}\mathbf{x} = \mathbf{b}$ for a Very Large Matrix \mathbf{A}			
		4.2.1 LU - Decomposition			
		4.2.2 Conjugate Gradient Method			
	4.3	The Calculation of a Specific Eigenvalue/Eigenvector			

		4.3.1	Power Method	44
		4.3.2	Inverse Iteration	45
		4.3.3	Inverse Iteration with Shift	46
		4.3.4	Newton's Method	46
	4.4	Partitic	oning Into Subspaces	47
	4.5	The Gl	obal Mode	50
		4.5.1	The Starting Guesses	50
		4.5.2	The Main Iteration	51
	46	The Le	eft Eigenvector	51
	47	Region	al Modes	55
		1108101		00
5	Inte	rpretati	on and Visualization of Results	57
	5.1	Measu	rement Database	58
	5.2	Display	ying Three Dimensional Variables	58
	5.3	Eigenv	ectors	60
		5.3.1	Right Eigenvector	60
		5.3.2	Left Eigenvector	61
	5.4	The Co	ontributors to the Eigenvalue/Decay Ratio	62
		5.4.1	Contribution of the Model Sections to the Eigenvalue	65
		5.4.2	Contribution of the Fuel Assemblies to the Eigenvalue	67
		5.4.3	The Core of an Unstable Operating Point	73
		5.4.4	Further Analysis Around an Unstable Operating Point	76
		5.4.5	Contribution of Selected Equations to the Eigenvalue	83
		5.4.6	Analysis of Operating Points based on λ Contribution Plots	84
		5.4.7	Comparison of Different Operating Points in Leibstadt	90
	5.5	Sensiti	vity Analysis	92
(Vani	6		05
0	veri	ncation/	validation	95
	6.1	Analys		96
		6.1.1	ARMA and ARMAX Models	98
	< a	6.1.2	Comparing LPRM Signals With MATSTAB	98
	6.2	Global	Oscillations	99
		6.2.1	Forsmark	99
		6.2.2	Oskarshamn	117
		6.2.3	Leibstadt	120
	6.3	Region	al Oscillations	124
		6.3.1	Leibstadt	125
7	Con	clusions	3	131
٨	The	RYWU	NA/POLCA Model	122
A		Neutro	n Kinetics and Power Generation	133
	л.1		Governing Equations for Neutron Kinetics	133
		A.1.1	Boundary Conditions	134
		Α.1.2	Node Integrated Balance Equations	133
		A.1.3	Drouge Integrated Datative Equations	100
		A.1.4		13/

		A.1.5	Linearization	139			
		A.1.6	Power Generation	139			
		A.1.7	Linearization	140			
A.2		Model	ing of Thermal Conduction	141			
		A.2.1	Field Equation of Thermal Conduction	141			
		A.2.2	Discretization	143			
		A.2.3	Linearization	144			
	A.3 Modeling of Thermal-Hydraulics		ing of Thermal-Hydraulics	145			
		A.3.1	Governing Equations for the Thermal-Hydraulics	146			
		A.3.2	Differential Equations	147			
		A.3.3	Algebraic Equations	151			
		A.3.4	Linearization	154			
	A.4	The N	umerical Linearization	157			
B	Deta	iled Str	cucture of the Matrix A _s	159			
С	Inpu	it / Out	put of MATSTAB	165			
	C.1	Screen	Output of MATSTAB	165			
	C.2	MATS	TAB Input Desk for Leibstadt	166			
Acknowledgments							
Cu	Curriculum Vitae						

List of Tables

1.1	Events with Core Instabilities	4
1.2	Common Stability Codes in 1998	8
2.1	Differential and Algebraic Equations used in MATSTAB	13
5.1	Investigation of the Operating Point with 45% Power/28% Core Flow	76
5.2	Decay Ratio and Frequency for Different Slip Values	94
6.1	Key Parameters of the NPPs Involved in Validating MATSTAB	97
6.2	Comparison Between MATSTAB and Measurements in Forsmark 1	100
6.3	Comparison Between MATSTAB and Measurements in Forsmark 2	106
6.4	Comparison Between MATSTAB and Measurements in Forsmark 3	112
6.5	Comparison Between MATSTAB and Measurements in Oskarshamn	117
6.6	Comparison Between MATSTAB and Measurements in Leibstadt	120
6.7	Comparison Between MATSTAB and Measurements for Leibstadt Cycle 7	125
B .1	MATSTAB Numbering Scheme for the Channels in a Half-Core Case	159
B.2	MATSTAB Numbering Scheme for the Neutronics	160
B.3	MATSTAB Numbering Scheme for the Thermal-Hydraulics	160
B.4	MATSTAB Numbering Scheme in the Matrix A_s for the Leibstadt Reactor.	161
B.5	MATSTAB Numbering Scheme in the Matrix A_s for Forsmark 1 and 2	162
B.6	MATSTAB Numbering Scheme in the Matrix \mathbf{A}_s for Forsmark 3	163